Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To meet the challenge of video target tracking, based on a self-organization mapping network (SOM) and correlation filter, a long-term visual tracking algorithm is proposed. Objects in different videos or images often have completely different appearance, therefore, the self-organization mapping neural network with the characteristics of signal processing mechanism of human brain neurons is used to perform adaptive and unsupervised features learning. A reliable method of robust target tracking is proposed, based on multiple adaptive correlation filters with a memory function of target appearance at the same time. Filters in our method have different updating strategies and can carry out long-term tracking cooperatively. The first is the displacement filter, a kernelized correlation filter that combines contextual characteristics to precisely locate and track targets. Secondly, the scale filters are used to predict the changing scale of a target. Finally, the memory filter is used to maintain the appearance of the target in long-term memory and judge whether the target has failed to track. If the tracking fails, the incremental learning detector is used to recover the target tracking in the way of sliding window. Several experiments show that our method can effectively solve the tracking problems such as severe occlusion, target loss and scale change, and is superior to the state-of-the-art methods in the aspects of efficiency, accuracy and robustness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072667 | PMC |
http://dx.doi.org/10.3390/s21082864 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!