CSRR-SICW High Sensitivity High Temperature Sensor Based on SiN Ceramics.

Micromachines (Basel)

Science and Technology on Electronic Test & Measurement Laboratory, North University of China, No.3 Xueyuan Road, Taiyuan 030051, China.

Published: April 2021

A new type of wireless passive, high sensitivity, high temperature sensor was designed to meet the real-time temperature test in the harsh aero-engine environment. The sensor consists of a complementary split ring resonator and a substrate integrated circular waveguide (CSRR-SICW) structure and is based on high temperature resistant SiN ceramic as the substrate material. Temperature is measured by real-time monitoring of the resonant frequency of the sensor. In addition, the ambient temperature affects the dielectric constant of the dielectric substrate, and the resonant frequency of the sensor is determined by the dielectric constant, so the function relationship between temperature and resonant frequency can be established. The experimental results show that the resonant frequency of the sensor decreases from 11.3392 GHz to 11.0648 GHz in the range of 50-1000 °C. The sensitivity is 123 kHz/°C and 417 kHz/°C at 50-450 °C and 450-1000 °C, respectively, and the average test sensitivity is 289 kHz/°C. Compared with previously reported high temperature sensors, the average test sensitivity is approximately doubled, and the test sensitivity at 450-1000 °C is approximately three times higher. Therefore, the proposed high sensitivity sensor has promising prospects for high temperature measurement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073578PMC
http://dx.doi.org/10.3390/mi12040459DOI Listing

Publication Analysis

Top Keywords

high temperature
20
resonant frequency
16
high sensitivity
12
frequency sensor
12
test sensitivity
12
temperature
9
sensitivity high
8
temperature sensor
8
dielectric constant
8
450-1000 °c
8

Similar Publications

Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.

View Article and Find Full Text PDF

The strong solid-liquid interaction leads to the complicated occurrence characteristics of shale oil. However, the solid-liquid interface interaction and its controls of the occurrence state of shale oil are poorly understood on the molecular scale. In this work, the adsorption behavior and occurrence state of shale oil in pores of organic/inorganic matter under reservoir conditions were investigated by using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Aerogels hold great potential in thermal insulation, catalytic supports, adsorption, and separation, due to their low density, high porosity, and low thermal conductivity. However, their inherent mechanical fragility and limited control functionality pose substantial challenges that hinder their practical use. In this study, a strategy is developed for the fabrication of cross-linked aramid nanofiber aerogels (cANFAs) by combining internanofiber surface cross-linking with ice-templating techniques.

View Article and Find Full Text PDF

The reduction of CO2 to CO provides a promising approach to the production of valuable chemicals through CO2 utilization. However, challenges persist with the rapid deactivation and insufficient activity of catalysts. Herein, we developed a soft-hard dual-template method to synthesize layered MoS2 using inexpensive and scalable templates, enabling facile regulation of sulfur vacancies by controlling the number of layers.

View Article and Find Full Text PDF

Atypical Patients With Severe Fever With Thrombocytopenia Syndrome.

J Med Virol

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China.

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease with a high fatality rate. The clinical diagnosis criteria mainly rely on white blood cell (WBC) and platelet (PLT), which, however, are of limited usage in identifying atypical SFTS. A multicenter study was performed in two hospitals from 2011 to 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!