This paper presents the results of an evaluation of the impact of the amount of potassium hydroxide on the obtained porous structure of the activated carbons derived from the shells of pistachios, hazelnuts, and pecans by carbonization and subsequent chemical activation with potassium hydroxide by different adsorption methods: Brunauer-Emmett-Teller, Dubinin-Raduskevich, the new numerical clustering-based adsorption analysis, Quenched Solid Density Functional Theory, and 2D-Non-linear Density Functional Theory for Heterogeneous Surfaces, applied to nitrogen adsorption isotherms at -196 °C. Based on the conducted research, a significant potential for the production of activated carbons from waste materials, such as nut shells, has been demonstrated. All the activated carbons obtained in the present study at the activator/char mass ratio = 4 exhibited the most developed porous structure, and thus very good adsorption properties. However, activated carbons obtained from pecan shells deserve special attention, as they were characterized by the most homogeneous surface among all the samples analyzed, i.e., by a very desirable feature in most adsorption processes. The paper demonstrates the necessity of using different methods to analyze the porous structure of activated carbons in order to obtain a complete picture of the studied texture. This is because only a full spectrum of information allows for correctly selecting the appropriate technology and conditions for the production of activated carbons dedicated to specific industrial applications. As shown in this work, relying only on the simplest methods of adsorption isotherm analysis can lead to erroneous conclusions due to lack of complete information on the analyzed porous structure. This work thus also explains how and why the usual characterizations of the porous structure of activated carbons derived from lignocellulosic biomass should not be taken at face value. On the contrary, it is advisable to cross reference several models to get a precise idea of the adsorbent properties of these materials, and therefore to propose the most suitable production technology, as well as the conditions of the preparation process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073333 | PMC |
http://dx.doi.org/10.3390/ma14082045 | DOI Listing |
Sci Rep
January 2025
Department of Systems Ecology and Sustainability, Faculty of Biology, University of Bucharest, Bucharest, Romania.
As conservation agricultural practices continue to spread, there is a need to understand how reduced tillage impacts soil microbes. Effects of no till (NT) and disk till (DT) relative to moldboard plow (MP) were investigated in a long-term experiment established on Chernozem. Results showed that conservation practices, especially NT, increased total, active and microbial biomass carbon.
View Article and Find Full Text PDFTalanta
December 2024
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India. Electronic address:
The electrochemical biosensor has brought a paradigm shift in the field of sensing due to its fast response and easy operability. The performance of electrochemical sensors can be modified by coupling them with various metal oxides, nanomaterials, and nanocomposites. Hydrogen peroxide is a short-lived reactive oxygen species that plays a crucial role in various physiological and biological processes.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; School of the Built Environment, University of Reading, Reading RG6 6DB, UK. Electronic address:
Environmental pollutants including ultrafine particulate matter (UFPs) and adverse meteorological conditions pose significant public health impacts, particularly affecting respiratory health. This study aims to elucidate the synergistic effects of cold-humid conditions and UFPs exposure on respiratory health, utilizing Carbon Black Nanoparticles (CB-NPs) as surrogates for UFPs. Through comprehensive lung function tests, histopathological examinations, and biomarker analyses, this research focuses on the modulation of oxidative stress signaling pathways and NF-κB activation.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Molecular Biology Department, Biotechnology Research Institute, National Research Center, El-Buhouth St. 33, Dokki, P.O.12622, Giza, Egypt.
Background: Actinomycetes are a well-known example of a microbiological origin that may generate a wide variety of chemical structures. As excellent cell factories, these sources are able to manufacture medicines, agrochemicals, and enzymes that are crucial.
Results: In this study, about 34 randomly selected Streptomyces isolates were discovered in soil, sediment, sea water, and other environments.
Environ Sci Pollut Res Int
January 2025
School of Natural and Built Environment, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK.
This research presents a straightforward and economically efficient design for a microbial fuel cell (MFC) that can be conveniently integrated into a borehole to monitor natural attenuation in groundwater. The design employs conventional, transparent, and reusable PVC bailers with graphite tape and granular activated carbon to create high surface area electrodes. These electrodes are connected across redox environments in nested boreholes through a wire and variable resistor setup.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!