The Use of Upconversion Nanoparticles in Prostate Cancer Photodynamic Therapy.

Life (Basel)

Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, 41-902 Bytom, Poland.

Published: April 2021

Photodynamic Therapy (PDT) is a cancer treatment that uses light, a photosensitizer, and oxygen to destroy tumors. This article is a review of approaches to the treatment of prostate cancer applying upconversion nanoparticles (UCNPs). UCNPs have become a phenomenon that are rapidly gaining recognition in medicine. They have proven to be highly selective and specific and present a powerful tool in the diagnosis and treatment of prostate cancer. Prostate cancer is a huge health problem in Western countries. Its early detection can significantly improve patients' prognosis, but currently used diagnostic methods leave much to be desired. Recently developed methodologies regarding UCNP research between the years 2021 and 2014 for prostate cancer PDT will also be discussed. Current limitations in PDT include tissue irradiation with visible wavelengths that have a short tissue penetration depth. PDT with the objectives to synthesize UCNPs composed of a lanthanide core with a coating of adsorbed dye that will generate fluorescence after excitation with near-infrared light to illuminate deep tissue is a subject of intense research in prostate cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073589PMC
http://dx.doi.org/10.3390/life11040360DOI Listing

Publication Analysis

Top Keywords

prostate cancer
24
upconversion nanoparticles
8
photodynamic therapy
8
treatment prostate
8
cancer
7
prostate
6
nanoparticles prostate
4
cancer photodynamic
4
therapy photodynamic
4
pdt
4

Similar Publications

Comprehensive analysis of the interaction microbiome and prostate cancer: an initial exploration from multi-cohort metagenome and GWAS studies.

J Transl Med

January 2025

Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Wuhan, 430030, P.R. China.

Introduction: Prostate cancer is one of the most common cancers in the United States with a high mortality rate. In recent years, the traditional opinion about prostate microbiome was challenged. Although there still are some arguments, an escalating number of researchers are shifting their focus toward the microbiome within the prostate tumor environment.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a highly common type of malignancy and affects millions of men in the world since it is easy to recur or emerge therapy resistance. Therefore, it is urgent to find novel treatments for PCa patients. In the current study, we found that tegaserod maleate (TM), an FDA-approved agent, inhibited proliferation, colony formation, migration as well as invasion, caused the arrest of the cell cycle, and promoted apoptosis of PCa cells in vitro.

View Article and Find Full Text PDF

Prostate cancer presents a major health issue, with its progression influenced by intricate molecular factors. Notably, the interplay between miRNAs and changes in transcriptomic patterns is not fully understood. Our study seeks to bridge this knowledge gap, employing computational techniques to explore how miRNAs and transcriptomic alterations jointly regulate the development of prostate cancer.

View Article and Find Full Text PDF

Purposes: The presence of clinically significant prostate cancer (csPCa) is equivocal for patients with prostate imaging reporting and data system (PI-RADS) category 3. We aim to develop deep learning models for re-stratify risks in PI-RADS category 3 patients.

Methods: This retrospective study included a bi-parametric MRI of 1567 consecutive male patients from six centers (Centers 1-6) between Jan 2015 and Dec 2020.

View Article and Find Full Text PDF

Background And Objective: A gonadotropin-releasing hormone (GnRH) agonist such as leuprolide is widely used to achieve sustained suppression of testosterone levels, which play a critical role in the treatment of prostate cancer. Recent advances in drug delivery systems have led to the development of long-acting depot formulations, such as the 6-month intramuscular (IM) leuprolide formulation, which aim to simplify dosing and improve convenience for both patients and healthcare providers. Exploring extended dosing intervals for such formulations represents a promising approach to further optimize treatment regimens, potentially balancing efficacy with patient-centered care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!