Condition Assessment of Industrial Gas Turbine Compressor Using a Drift Soft Sensor Based in Autoencoder.

Sensors (Basel)

Intelligent Data Science and Artificial Intelligence Research Centre (IDEAI), Automatic Control Department, Campus Nord, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain.

Published: April 2021

Maintenance is the process of preserving the good condition of a system to ensure its reliability and availability to perform specific operations. The way maintenance is nowadays performed in industry is changing thanks to the increasing availability of data and condition assessment methods. Soft sensors have been widely used over last years to monitor industrial processes and to predict process variables that are difficult to measured. The main objective of this study is to monitor and evaluate the condition of the compressor in a particular industrial gas turbine by developing a soft sensor following an autoencoder architecture. The data used to monitor and analyze its condition were captured by several sensors located along the compressor for around five years. The condition assessment of an industrial gas turbine compressor reveals significant changes over time, as well as a drift in its performance. These results lead to a qualitative indicator of the compressor behavior in long-term performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069283PMC
http://dx.doi.org/10.3390/s21082708DOI Listing

Publication Analysis

Top Keywords

condition assessment
12
industrial gas
12
gas turbine
12
assessment industrial
8
turbine compressor
8
soft sensor
8
condition
6
compressor
5
industrial
4
compressor drift
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!