3D printing PLA wastes were recovered from a well-known reference grade and from different sources. The recovered wastes were subjected to an energic washing step and then reprocessed into films by melt-extrusion, followed by compression molding to simulate the industrial processing conditions. The obtained materials were characterized and the optical, structural, thermal and crystallization behavior are reported. The mechanical recycling process leads to an increase of the crystallinity and a decrease of the intrinsic viscosity of the formulations, particularly in the sample based on blends of different 3D-PLA wastes. Moreover, the obtained films were disintegrated under composting conditions in less than one month and it was observed that recycled materials degrade somewhat faster than the starting 3D-PLA filament, as a consequence of the presence of shorter polymer chains. Finally, to increase the molecular weight of the recycled materials, the 3D-PLA wastes were submitted to a solid-state polymerization process at 110, 120, and 130 °C, observing that the recycled 3D-wastes materials based on a well-known reference grade experiences an improvement of the intrinsic viscosity, while that coming from different sources showed no significant changes. Thus, the results show that 3D printing PLA products provides an ideal environment for the implementation of distributed recycling program, in which wastes coming from well-known PLA grades can successfully be processed in films with good overall performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069463 | PMC |
http://dx.doi.org/10.3390/polym13081247 | DOI Listing |
Heliyon
November 2024
Department of Civil Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
This study introduces an innovative approach to enhancing recycled aggregate concrete (RAC) by incorporating nanosilica (NS) and natural fibers (NF), specifically sisal fiber (SF) and palm fiber (PF). This novel combination aims to overcome the inherent limitations of RAC, such as reduced strength and durability, while promoting sustainability in construction. The research focuses on evaluating the mechanical properties of RAC, including compressive and flexural strengths, through the integration of NS and NF.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Materials Science and Engineering, Inha University, Incheon, 22212, Korea.
This study investigates the optimization of mechanical milling parameters to enhance the recycling of Ti6Al4V machining chips, addressing a significant challenge in sustainable materials processing. The influence of ball-to-powder ratio (BPR) and ball size distribution on powder characteristics, including crystallite size, particle size, and phase composition, was systematically examined. Key findings include a 30% reduction in crystallite size, with the smallest crystallite size of 51.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, Adama Science and Technology University, Adama, Ethiopia.
Recycled engine oil was produced from used engine oil (15W-40) using a combination of MEK and 1-butanol solvents with an activated carbon adsorbent through the adsorption process. The experimental design matrix was prepared using Box-Behnken design (BBD) package within RSM, and recycled engine oil is optimized by response surface methodology (RSM). By varying solvent-to-oil ratio, the temperature and contact duration optimal conditions were identified as a 5.
View Article and Find Full Text PDFNat Commun
January 2025
Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China.
Achieving a synergy of biocompatibility and extreme environmental adaptability with excellent mechanical property remains challenging in the development of synthetic materials. Herein, a "bottom-up" solution-interface-induced self-assembly strategy is adopted to develop a compressible, anti-fatigue, extreme environment adaptable, biocompatible, and recyclable organohydrogel composed of chitosan-lignosulfonate-gelatin by constructing noncovalent bonded conjoined network. The ethylene glycol/water solvent induced lignosulfonate nanoparticles function as bridge in chitosan/gelation network, forming multiple interfacial interactions that can effectively dissipate energy.
View Article and Find Full Text PDFScientificWorldJournal
December 2024
Department of Mechanical Engineering, Dream Institute of Technology, Kolkata, 700104, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!