RRM1-an important DNA replication/repair enzyme-is the primary molecular gemcitabine (GEM) target. High RRM1-expression associates with gemcitabine-resistance in various cancers and RRM1 inhibition may provide novel cancer treatment approaches. Our study elucidates how RRM1 inhibition affects cancer cell proliferation and influences gemcitabine-resistant bladder cancer cells. Of nine bladder cancer cell lines investigated, two RRM1 highly expressed cells, 253J and RT112, were selected for further experimentation. An RRM1-targeting shRNA was cloned into adenoviral vector, Ad-shRRM1. Gene and protein expression were investigated using real-time PCR and western blotting. Cell proliferation rate and chemotherapeutic sensitivity to GEM were assessed by MTT assay. A human tumor xenograft model was prepared by implanting RRM1 highly expressed tumors, derived from RT112 cells, in nude mice. Infection with Ad-shRRM1 effectively downregulated RRM1 expression, significantly inhibiting cell growth in both RRM1 highly expressed tumor cells. In vivo, Ad-shRRM1 treatment had pronounced antitumor effects against RRM1 highly expressed tumor xenografts ( < 0.05). Moreover, combination of Ad-shRRM1 and GEM inhibited cell proliferation in both cell lines significantly more than either treatment individually. Cancer gene therapy using anti-RRM1 shRNA has pronounced antitumor effects against RRM1 highly expressed tumors, and RRM1 inhibition specifically increases bladder cancer cell GEM-sensitivity. Ad-shRRM1/GEM combination therapy may offer new treatment options for patients with GEM-resistant bladder tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071414 | PMC |
http://dx.doi.org/10.3390/ijms22084102 | DOI Listing |
Eur J Pharm Sci
January 2025
Department of Oriental Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, South Korea. Electronic address:
A highly aggressive neoplastic disease, pancreatic ductal adenocarcinoma (PDAC) is documented as the third chief cause of cancer-associated mortality in both sexes combined in the United States. For decades, gemcitabine-based chemotherapy has been embraced as a cornerstone drug for the treatment of PDAC. However, there have been several unsolved problems, including cytotoxicity, and chemoresistance.
View Article and Find Full Text PDFACS Chem Neurosci
December 2024
Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
Dev Comp Immunol
November 2024
Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, South Korea. Electronic address:
Peroxiredoxin 5 (Prdx5) is the last recognized member of Prdx family. It is a unique, atypical, 2-Cys antioxidant enzyme, protecting cells from death caused by reactive oxygen species (ROS). In this study, the Prdx5 ortholog of Amphiprion clarkii (AcPrdx5) was identified and characterized to explore its specific structural features and functional properties.
View Article and Find Full Text PDFACS Cent Sci
October 2024
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.
Diphthamide (DPH) is a highly conserved post-translational modification exclusively present in eukaryotic translation elongation factor 2 (eEF2), with its loss leading to embryonic lethality in mice and developmental disorders in humans. In this study, we unveil the role of diphthamide in mammalian cell DNA damage stress, with a particular emphasis on DNA replication stress. We developed a systematic strategy to identify human proteins affected by diphthamide with a combination of computational profiling and quantitative proteomics.
View Article and Find Full Text PDFBiophys J
November 2024
Artie McFerrin Department of Chemical Engineering, Texas A&M College of Engineering, College Station, Texas; Department of Chemistry, Texas A&M University, College Station, Texas; Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, Texas. Electronic address:
TAR DNA binding protein 43 (TDP-43) is a nuclear RNA/DNA-binding protein with pivotal roles in RNA-related processes such as splicing, transcription, transport, and stability. The high binding affinity and specificity of TDP-43 toward its cognate RNA sequences (GU-rich) is mediated by highly conserved residues in its tandem RNA recognition motif (RRM) domains (aa: 104-263). Importantly, the loss of RNA binding to the tandem RRMs caused by physiological stressors and chemical modifications promotes cytoplasmic mislocalization and pathological aggregation of TDP-43.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!