Cold brew coffee is a new trend in the coffee industry. This paper presents pilot studies on several aspects of this beverage. Using an online survey, the current practices of cold brew coffee preparation were investigated, identifying a rather large variability with a preference for extraction of medium roasted Arabica coffee using 50-100 g/L at 8 °C for about 1 day. Sensory testing using ranking and triangle tests showed that cold brew may be preferred over iced coffee (cooled down hot extracted coffee). Extraction experiments under different conditions combined with nuclear magnetic resonance (NMR) analysis showed that the usual extraction time may be longer than necessary as most compounds are extracted within only a few hours, while increasing turbulence (e.g., using ultrasonication) and temperature may additionally increase the speed of extraction. NMR analysis also revealed a possible chemical differentiation between cold brew and hot brew using multivariate data analysis. Decreased extraction time and reduced storage times could be beneficial for cold brew product quality as microbiological analysis of commercial samples detected samples with spoilage organisms and contamination with .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071471 | PMC |
http://dx.doi.org/10.3390/foods10040865 | DOI Listing |
Int J Food Microbiol
January 2025
Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:
This study aimed to investigate the bactericidal effect of naringenin (NG), a plant-derived flavonoid, and its synergistic effect with mild heat (MH) treatment at 50 °C in peptone water (PW) and ready-to-drink cold brew coffee (RDC). Among various NG concentrations (1-20 mM), 10 mM NG resulted in the greatest inactivation for Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus. In RDC, NG + MH treatment resulted in a 5-8-log reduction in all pathogens after 10 min, except for S.
View Article and Find Full Text PDFFoods
December 2024
Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland.
The study investigated the effects of storage temperature, type of coffee, and brewing method on coffee's volatile compound profile and sensory quality. Three types of coffee were included in the study: Arabica, Robusta, and their 80/20 blend. Samples were stored at 5 °C and 20 °C for one month, after which the changes in the composition of volatile compounds were analysed and the sensory quality of espresso and cold brew coffee was assessed.
View Article and Find Full Text PDFFood Chem X
December 2024
School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
Cold brew coffee has gained significant popularity in the global market. This study examined the differences in chemical properties and flavor of cold brew coffee during storage, which was subjected to low-temperature pasteurization using induced electric field (IEF) at temperatures of 52 °C and 58 °C for 92 s, corresponding to 18.52 V/cm and 25.
View Article and Find Full Text PDFFood Chem
February 2025
Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 48181-68984, Iran.
In this study, the impact of various tea preparation techniques on the content of bioactive compounds, antioxidant capacity, antibacterial properties, and polyphenol bioavailability in green, black, and oolong tea infusions was examined. The findings demonstrated that the fermentation process significantly influences the levels of bioactive compounds, with green tea infusions exhibiting the highest, and black tea the lowest, content of phenolic compounds. A positive correlation was observed between the content of the phenolic compound and both antioxidant and antibacterial activities.
View Article and Find Full Text PDFUltrason Sonochem
December 2024
School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!