Holistic and life-long medical surveillance is the core of personalised medicine and supports an optimal implementation of both preventive and curative healthcare. Personal medical records are only partially unified by hospital or general practitioner informatics systems, but only for citizens with long-term permanent residence. Otherwise, insight into the medical history of patients greatly depends on their medical archive and memory. Additionally, occupational exposure records are not combined with clinical or general practitioner records. Environmental exposure starts preconceptionally and continues during pregnancy by transplacental exposure. Antenatal exposure is partially dependent on parental lifestyle, residence and occupation. Newborn screening (NBS) is currently being performed in developed countries and includes testing for rare genetic, hormone-related, and metabolic conditions. Transplacental exposure to substances such as endocrine disruptors, air pollutants and drugs may have life-long health consequences. However, despite the recognised impact of transplacental exposure on the increased risk of metabolic syndrome, neurobehavioral disorders as well as immunodisturbances including allergy and infertility, not a single test within NBS is geared toward detecting biomarkers of exposure (xenobiotics or their metabolites, nutrients) or effect such as oestradiol, testosterone and cytokines, known for being associated with various health risks and disturbed by transplacental xenobiotic exposures. The outcomes of ongoing exposome projects might be exploited to this purpose. Developing and using a OneHealth Medical Record (OneHealth) may allow the incorporated chip to harvest information from different sources, with high integration added value for health prevention and care: environmental exposures, occupational health records as well as diagnostics of chronic diseases, allergies and medication usages, from birth and throughout life. Such a concept may present legal and ethical issues pertaining to personal data protection, requiring no significant investments and exploits available technologies and algorithms, putting emphasis on the prevention and integration of environmental exposure and health data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071263PMC
http://dx.doi.org/10.3390/medicina57040382DOI Listing

Publication Analysis

Top Keywords

transplacental exposure
12
onehealth medical
8
medical record
8
general practitioner
8
exposure
8
environmental exposure
8
medical
6
health
5
immuno-hormonal genetic
4
genetic metabolic
4

Similar Publications

Microchimerism is defined as the presence of a small population of genetically distinct cells within a host that is derived from another individual. Throughout pregnancy, maternal and fetal cells are known to traffic across the feto-maternal interface and result in maternal and fetal microchimerism, respectively. However, the routes of cell transfer, the molecular signaling as well as the timing in which trafficking takes place are still not completely understood.

View Article and Find Full Text PDF

The mechanistic target of rapamycin (mTOR) system is vital to placental development, formation, and function. Alterations in this system in the placenta have been associated with altered fetal growth. However, changes in placental mTOR signaling across gestation are poorly understood.

View Article and Find Full Text PDF

Involvement of Tim-3 in Maternal-fetal Tolerance: A Review of Current Understanding.

Int J Biol Sci

January 2025

Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China.

As the first T cell immunoglobulin mucin (Tim) family member to be identified, Tim-3 is a powerful immune checkpoint that functions in immunoregulation and induction of tolerance. Conventionally, Tim-3 is considered to play a role in adaptive immunity, especially in helper T cell-mediated immune responses. As researches progress, Tim-3 has been detected in a wider range of cell types, modulating cell function through ligand-receptor interactions and other pathways.

View Article and Find Full Text PDF

The placenta plays a critical role in nutrient and oxygen exchange during pregnancy, yet the effects of medicinal drugs on this selective barrier remain poorly understood. To overcome this, this study presents a cost-effective bioimpedance spectroscopy (BIS) system to assess tight junction integrity and monolayer formation in BeWo b30 cells, a widely used model of the multinucleated maternal-fetal exchange surface of the placental barrier. Cells were cultured on collagen-coated porous membranes and treated with forskolin to induce controlled syncytialization.

View Article and Find Full Text PDF

The placenta is a vital organ that supports fetal development by mediating nutrient and gas exchange, regulating immune tolerance, and maintaining hormonal balance. Its formation and function are tightly linked to the processes of embryo implantation and the establishment of a robust placental-uterine interface. Recent advances in molecular biology and histopathology have shed light on the key regulatory factors governing these processes, including trophoblast invasion, spiral artery remodeling, and the development of chorionic villi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!