With rapidly developing technology, visual cues became a powerful tool for deliberate guiding of attention and affecting human performance. Using cues to manipulate attention introduces a trade-off between increased performance in cued, and decreased in not cued, locations. For higher efficacy of visual cues designed to purposely direct user's attention, it is important to know how manipulation of cue properties affects attention. In this verification study, we addressed how varying cue complexity impacts the allocation of spatial endogenous covert attention in space and time. To gradually vary cue complexity, the discriminability of the cue was systematically modulated using a shape-based design. Performance was compared in attended and unattended locations in an orientation-discrimination task. We evaluated additional temporal costs due to processing of a more complex cue by comparing performance at two different inter-stimulus intervals. From preliminary data, attention scaled with cue discriminability, even for supra-threshold cue discriminability. Furthermore, individual cue processing times partly impacted performance for the most complex, but not simpler cues. We conclude that, first, cue complexity expressed by discriminability modulates endogenous covert attention at supra-threshold cue discriminability levels, with increasing benefits and decreasing costs; second, it is important to consider the temporal processing costs of complex visual cues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8167570PMC
http://dx.doi.org/10.3390/vision5020018DOI Listing

Publication Analysis

Top Keywords

cue discriminability
16
visual cues
12
cue complexity
12
cue
11
endogenous covert
8
covert attention
8
supra-threshold cue
8
attention
7
discriminability
6
performance
6

Similar Publications

Glutamatergic signaling is one of the primary targets of actions of alcohol in the brain, and dysregulated excitatory transmission in the prefrontal cortex (PFC) may contribute problematic drinking and relapse. A prominent component of glutamate signaling is the type 5 metabotropic glutamate (mGlu5) receptor. However, little is known about the role of this receptor type in subregions of the PFC that regulate either alcohol intake or alcohol-seeking behavior.

View Article and Find Full Text PDF

Comparing auditory and visual aspects of multisensory working memory using bimodally matched feature patterns.

Exp Brain Res

December 2024

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, CNY 149, 13th St, Charlestown, MA, 02129, USA.

Working memory (WM) reflects the transient maintenance of information in the absence of external input, which can be attained via multiple senses separately or simultaneously. Pertaining to WM, the prevailing literature suggests the dominance of vision over other sensory systems. However, this imbalance may be stemming from challenges in finding comparable stimuli across modalities.

View Article and Find Full Text PDF

Recent evidence suggests that cannabis can impair simple auditory processes, and these alterations might be due to cannabinoid agonism. The effect of cannabinoid agonism on relatively complex processes such as auditory discrimination is unknown. The goal of this study was to examine the impact of WIN 55,212-2, a CB1 receptor and CB2 receptor agonism, on auditory discrimination using a go/no-go task.

View Article and Find Full Text PDF

Preterm birth is a leading risk factor for atypicalities in cognitive and sensory processing, but it is unclear how prematurity impacts circuits that support these functions. To address this, we trained adult mice born a day early (preterm mice) on a visual discrimination task and found that they commit more errors and fail to achieve high levels of performance. Using , we found that the neurons in the primary visual cortex (V1) and the V1-projecting prefrontal anterior cingulate cortex (ACC) are hyper-responsive to the reward, reminiscent of cue processing in adolescence.

View Article and Find Full Text PDF

Being able to detect changes in our visual environment reliably and quickly is important for many daily tasks. The motion silencing effect describes a decrease in the ability to detect feature changes for faster moving objects compared with stationary or slowly moving objects. One theory is that spatiotemporal receptive field properties in early vision might account for the silencing effect, suggesting that its origins are low-level visual processing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!