This study quantified the potential of farm-scale composting to degrade antibiotics in dairy manure. The compost windrow, consisting of sick cow bedding from a 1000-cow US dairy farm, was managed using the dairy farm's typical practices and monitored for tetracycline and nutrient composition. Samples were collected over 33 days, which was the time from compost pile formation to land application as fertilizer, and analyzed for solids, antibiotics, and nutrient content. Average tetracycline concentrations at the beginning of the study (452 ng/g DW) were lower than at the end of composting (689 ng/g DW), illustrating that antibiotic degradation was not greater than degradation of the compost solids. Total Kjeldahl nitrogen (TKN) increased from 15.3 to 18.4 g/kg during the composting period due to decreases in solids and likely inhibition of N-mineralization due to the presence of antibiotics. The results indicated that antibiotics were not completely degraded when using the farm's compost pile management techniques, with antibiotics possibly impacting nitrogen transformation in the compost, which should be considered in nutrient management when using sick cow bedding. Additionally, the results showed that antibiotic degradation during farm-scale composting can vary from reported laboratory-scale due to differences in management, composting duration, and temporal conditions, illustrating the need for more extensive on-farm research including common farm practices and real-world conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071338 | PMC |
http://dx.doi.org/10.3390/antibiotics10040443 | DOI Listing |
J Anim Sci
January 2025
University of Reading, School of Agriculture, Policy and Development, Earley gate, RG6 6EU Reading, United Kingdom.
This study investigated the effects of different protein sources on feed intake, nutrient, and energy utilization, growth performance, and enteric methane (CH4) emissions in growing beef cattle, also evaluated against a pasture-based diet. Thirty-two Holstein × Angus growing beef were allocated to four dietary treatments: a total mixed ration (TMR) including solvent-extracted soybean meal as the main protein source (SB; n = 8), TMR with local brewers' spent grains (BSG; n = 8), TMR with local field beans (BNS; n = 8), and a diet consisting solely of fresh-cut Italian ryegrass (GRA; n = 8). Every four weeks, animals were moved to digestibility stalls within respiration chambers to measure nutrient intakes, energy and nitrogen (N) utilization, and enteric CH4 emissions.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, 20133 Milan, Italy.
Mastitis represents a significant challenge for dairy farming, resulting in economic losses and environmental impacts. This study assesses a model for the evaluation of the impact of mastitis on dairy productivity and Global Warming Potential (GWP) under diverse management scenarios. The model considers a range of factors, including bedding materials, milking systems, health surveillance, and overcrowding.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
ICREA (Institució de Recerca i Estudis Avançats), 08010 Barcelona, Spain; Department of Animal and Veterinary Sciences, Universitat de Lleida, 25198 Lleida, Spain.
Sustainable alternatives to high environmental input feed ingredients are important to reducing the environmental impact of animal agriculture. Protein and oil extracted from cultivation of black soldier fly (Hermetia illucens) larvae (BSFL) on waste feedstocks such as manure, food waste and plant residues could be a suitable source of nutrients. The oil from BFSL contains large amounts of saturated fatty acids, particularly lauric acid, and may be a more sustainable alternative to palm and coconut oils that are currently used in calf milk replacers in many parts of the world.
View Article and Find Full Text PDFJ Environ Qual
January 2025
Department of Soil Science, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Evaluating how weather, farm management, and soil conditions impact phosphorus (P) loss from agricultural sites is essential for improving our waterways in agricultural watersheds. In this study, rainfall characteristics, manure application timing, tillage, surface condition, and soil test phosphorus (STP) were analyzed to determine their effects on total phosphorus (TP) and dissolved phosphorus (DP) loss using 125 site-years of runoff data collected by the University of Wisconsin Discovery Farms and Discovery Farms Minnesota. Three linear mixed models (LMMs) were then used to evaluate the influence of those factors on TP and DP losses: (1) a model that included all runoff events, (2) manured sites only, and (3) precipitation events only.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Agricultural Process Engineering, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18051 Rostock, Germany.
An increasing number of automation technologies for dairy cattle farming, including automatic milking, feeding, manure removal and bedding, are now commercially available. The effects of these technologies on individual aspects of animal welfare have already been explored to some extent. However, as of now, there are no studies that analyze the impact of increasing farm automation through various combinations of these technologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!