Mechanically Sustainable Starch-Based Flame-Retardant Coatings on Polyurethane Foams.

Polymers (Basel)

Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin 17058, Gyeonggi-do, Korea.

Published: April 2021

The use of halogen-based materials has been regulated since toxic substances are released during combustion. In this study, polyurethane foam was coated with cationic starch (CS) and montmorillonite (MMT) nano-clay using a spray-assisted layer-by-layer (LbL) assembly to develop an eco-friendly, high-performance flame-retardant coating agent. The thickness of the CS/MMT coating layer was confirmed to have increased uniformly as the layers were stacked. Likewise, a cone calorimetry test confirmed that the heat release rate and total heat release of the coated foam decreased by about 1/2, and a flame test showed improved fire retardancy based on the analysis of combustion speed, flame size, and residues of the LbL-coated foam. More importantly, an additional cone calorimeter test was performed after conducting more than 1000 compressions to assess the durability of the flame-retardant coating layer when applied in real life, confirming the durability of the LbL coating by the lasting flame retardancy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071101PMC
http://dx.doi.org/10.3390/polym13081286DOI Listing

Publication Analysis

Top Keywords

flame-retardant coating
8
coating layer
8
heat release
8
mechanically sustainable
4
sustainable starch-based
4
starch-based flame-retardant
4
flame-retardant coatings
4
coatings polyurethane
4
polyurethane foams
4
foams halogen-based
4

Similar Publications

Impact of phosphorus on the functional properties of extracellular polymeric substances recovered from sludge.

Water Res

December 2024

Deptartment of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ 2629, the Netherlands; Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.

Extracellular Polymeric Substances (EPS) are ubiquitous in biological wastewater treatment (WWT) technologies like activated sludge systems, biofilm reactors, and granular sludge systems. EPS recovery from sludge potentially offers a high-value material for the industry. It can be utilized as a coating in slow-release fertilizers, as a bio-stimulant, as a binding agent in building materials, for the production of flame retarding materials, and more.

View Article and Find Full Text PDF

Background: Perfluoroalkyl substances (PFAS) are persistent environmental contaminants previously used for industrial purposes as a non-stick coating and flame retardant. The stability of these molecules prevents their breakdown, which results in ground water contamination across the globe. Perfluoroalkyl substances molecules are known to bioaccumulate in various organisms.

View Article and Find Full Text PDF

The fully bio-based bilayered flame retardant treatment for paper via natural bio-materials.

Front Chem

December 2024

School of the Environment and Safety Engineering (School of the Emergency Management), Jiangsu University, Zhenjiang, China.

In this paper, we report a novel method for enhancing the flame retardancy of wood-based paper by utilizing natural biomaterials. The research constructed a bilayered structure coating on paper fiber surfaces, incorporating mixed starch (MS), adenosine triphosphate (ATP), and phytic acid (PA) as natural bio-based flame retardants. The structural configuration of the coating comprises MS/ATP and MS/PA, which were sequentially assembled as bottom and top parts, respectively, through pneumatic spraying.

View Article and Find Full Text PDF

Polyurethane sponge is frequently selected as a substrate material for constructing flexible compressible sensors due to its excellent resilience and compressibility. However, being highly hydrophilic and flammable, it not only narrows the range of use of the sensor but also poses a great potential threat to human safety. In this paper, a conductive flexible piezoresistive sensor (CHAP-PU) with superhydrophobicity and high flame retardancy was prepared by a simple dip-coating method using A-CNTs/HGM/ADP coatings deposited on the surface of a sponge skeleton and modified with polydimethylsiloxane.

View Article and Find Full Text PDF

Enhanced flame retardancy of polyurethane foam with alginate-based flame-retardant coating.

Int J Biol Macromol

December 2024

School of Chemistry and Environment, Shaanxi Provincial University Key Laboratory of Interfacial Porous Materials, Ankang Research Centre of New Nano-materials Science and Technology, Innovation Research Institute of Advanced Energy Storage Materials and Battery Technology for Future Industrialization, Ankang University, Shaanxi, Ankang 725000, PR China.

Polyurethane (PU) foam is widely used in industrial and civil fields, but it is highly flammable. An eco-friendly flame-retardant coating has been fabricated from sodium alginate (SA) and mica powder, it has been applied to PU foam using a facile direct dip coating method, followed by crosslinking with Ca and modification with polydimethylsiloxane (PDMS), respectively. The original porous network structure is maintained in the coated PU (SMPU) foam with a porosity of 90.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!