In this paper, we present an analytical prediction for nonlinear buckling of elastically supported functionally graded graphene platelet reinforced composite (FG-GPLRC) arches with asymmetrically distributed graphene platelets (GPLs). The effective material properties of the FG-GPLRC arch are formulated by the modified Halpin-Tsai micromechanical model. By using the principle of virtual work, analytical solutions are derived for the limit point buckling and bifurcation buckling of the FG-GPLRC arch subjected to a central point load (CPL). Subsequently, the buckling mode switching phenomenon of the FG-GPLRC arch is presented and discussed. We found that the buckling modes of the FG-GPLRC arch are governed by the GPL distribution pattern, rotational restraint stiffness, and arch geometry. In addition, the number of limit points in the nonlinear equilibrium path of the FG-GPLRC arch under a CPL can be determined according to the bounds of successive inflexion points. The effects of GPL distribution patterns, weight fractions, and geometric configurations on the nonlinear buckling behavior of elastically supported FG-GPLRC arches are also comprehensively discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073894 | PMC |
http://dx.doi.org/10.3390/ma14082026 | DOI Listing |
Materials (Basel)
April 2021
Wind and Vibration Engineering Research Center, Guangzhou University, Guangzhou 510006, China.
In this paper, we present an analytical prediction for nonlinear buckling of elastically supported functionally graded graphene platelet reinforced composite (FG-GPLRC) arches with asymmetrically distributed graphene platelets (GPLs). The effective material properties of the FG-GPLRC arch are formulated by the modified Halpin-Tsai micromechanical model. By using the principle of virtual work, analytical solutions are derived for the limit point buckling and bifurcation buckling of the FG-GPLRC arch subjected to a central point load (CPL).
View Article and Find Full Text PDFMaterials (Basel)
May 2018
Guangzhou University-Tamkang University Joint Research Center for Engineering Structure Disaster Prevention and Control, Guangzhou University, Guangzhou 510006, China.
The buckling behavior of functionally graded graphene platelet-reinforced composite (FG-GPLRC) shallow arches with elastic rotational constraints under uniform radial load is investigated in this paper. The nonlinear equilibrium equation of the FG-GPLRC shallow arch with elastic rotational constraints under uniform radial load is established using the Halpin-Tsai micromechanics model and the principle of virtual work, from which the critical buckling load of FG-GPLRC shallow arches with elastic rotational constraints can be obtained. This paper gives special attention to the effect of the GPL distribution pattern, weight fraction, geometric parameters, and the constraint stiffness on the buckling load.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!