Influence of Temperature on the Mechanical Performance of Unidirectional Carbon Fiber Reinforced Polymer Straps.

Materials (Basel)

School of Engineering, William Rankine Building, The University of Edinburgh, Thomas Bayes Road, King's Buildings, Edinburgh EH9 3FG, UK.

Published: April 2021

The performance of pretensioned, laminated, unidirectional (UD), carbon fiber reinforced polymer (CFRP) straps, that can potentially be used for example as bridge deck suspender cables or prestressed shear reinforcements for reinforced concrete slabs and beams, was investigated at elevated temperatures. This paper aims to elucidate the effects of elevated temperature specifically on the tensile performance of pretensioned, straps. Two types of tests are presented: (1) steady state thermal and (2) transient state thermal. Eight steady-state target temperatures in the range of 24 °C to 600 °C were chosen, based on results from dynamic mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). Transient state thermal tests were performed at three sustained tensile load levels, namely 10, 15, and 20 kN, corresponding to 25%, 37%, and 50% of the ultimate tensile strength of the pin-loaded straps at ambient temperature. In general, the straps were able to retain about 50% of their ambient temperature ultimate tensile strength (UTS) at 365 °C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070532PMC
http://dx.doi.org/10.3390/ma14081903DOI Listing

Publication Analysis

Top Keywords

state thermal
12
unidirectional carbon
8
carbon fiber
8
fiber reinforced
8
reinforced polymer
8
performance pretensioned
8
transient state
8
ultimate tensile
8
tensile strength
8
ambient temperature
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!