Multiple genetic factors contribute to the pathogenesis of autism spectrum disorder (ASD), a kind of neurodevelopmental disorder. Genes were usually studied separately for their associations with ASD. However, genes associated with ASD do not act alone but interact with each other in a network module. The identification of these modules is the basis for the systematic understanding of the pathogenesis of ASD. Moreover, ASD is characterized by highly pathogenic heterogeneity, and gene modules associated with ASD are cell-type-specific. In this study, based on the single-nucleus RNA sequencing data of 41 post-mortem tissue samples from the prefrontal cortex and anterior cingulate cortex of 19 ASD patients and 16 control individuals, we applied sparse module activity factorization, a matrix decomposition method consistent with the multi-factor and heterogeneous characteristics of ASD pathogenesis, to identify cell-type-specific gene modules. Then, statistical procedures were performed to detect highly reproducible cell-type-specific ASD-associated gene modules. Through the enrichment analysis of cell markers, 31 cell-type-specific gene modules related to ASD were further screened out. These 31 gene modules are all enriched with curated ASD risk genes. Finally, we utilized the expression patterns of these cell-type-specific ASD-associated gene modules to build predictive models for ASD. The excellent predictive performance also proved the associations between these gene modules and ASD. Our study confirmed the multifactorial and cell-type-specific characteristics of ASD pathogeneses. The results showed that excitatory neurons such as L2/3, L4, and L5/6-CC play essential roles in ASD's pathogenic processes. We identified the potential ASD target genes that act together in cell-type-specific modules, such as , , , , , and in the L2/3 gene modules. Our study offers new potential genomic targets for ASD and provides a novel method to study gene modules involved in the pathogenesis of ASD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069308PMC
http://dx.doi.org/10.3390/biomedicines9040410DOI Listing

Publication Analysis

Top Keywords

gene modules
36
asd
16
modules
11
gene
10
target genes
8
associated asd
8
pathogenesis asd
8
characteristics asd
8
cell-type-specific gene
8
cell-type-specific asd-associated
8

Similar Publications

Proteomic Characterization of NEDD4 Unveils Its Potential Novel Downstream Effectors in Gastric Cancer.

J Proteome Res

January 2025

Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea.

The E3 ubiquitin ligase neural precursor cell-expressed developmentally down-regulated 4 (NEDD4) is involved in various cancer signaling pathways, including PTEN/AKT. However, its role in promoting gastric cancer (GC) progression is unclear. This study was conducted to elucidate the role of NEDD4 in GC progression.

View Article and Find Full Text PDF

The Developmental Origin of Novel Complex Morphological Traits in Lepidoptera.

Annu Rev Entomol

January 2025

Department of Biology and Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico.

Novel traits in the order Lepidoptera include prolegs in the abdomen of larvae, scales, and eyespot and band color patterns in the wings of adults. We review recent work that investigates the developmental origin and diversification of these four traits from a gene-regulatory network (GRN) perspective. While prolegs and eyespots appear to derive from distinct ancestral GRNs co-opted to novel body regions, scales derive from in situ modifications of a sensory bristle GRN.

View Article and Find Full Text PDF

Bioinformatics Analysis of Programmed Death-1-Trastuzumab Resistance Regulatory Networks in Breast Cancer Cells.

Asian Pac J Cancer Prev

January 2025

Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia.

Objective: Programmed cell death-1 (PD-1, encoded by PDCD1) regulatory network participates in glioblastoma multiforme development. However, such a network in trastuzumab-resistant human epidermal growth factor receptor 2-positive (HER2+) breast cancer remains to be determined. Accordingly, this study was aimed to explore the PD-1 regulatory network responsible for the resistance of breast cancer cells to trastuzumab through a bioinformatics approach.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC), the most common form of liver cancer, has a significant mortality rate, largely due to late diagnosis. Recent advances in medical research have demonstrated the potential of biomarkers for early detection. Moreover, the discovery and use of prognostic biomarkers offer a ray of hope in the fight against liver cancer.

View Article and Find Full Text PDF

Inflammatory cytokines are fundamental mediators of the organismal response to injury, infection, or other harmful stimuli. To elucidate the early and mostly direct transcriptional signatures of inflammatory cytokines, we profiled all immunologic cell types by RNAseq after systemic exposure to IL1β, IL6, and TNFα. Our results revealed a significant overlap in the responses, with broad divergence between myeloid and lymphoid cells, but with very few cell-type-specific responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!