A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Large-Pore Platelet-Rich Fibrin with a Mg Ring to Allow MC3T3-E1 Preosteoblast Migration and to Improve Osteogenic Ability for Bone Defect Repair. | LitMetric

Platelet-rich fibrin (PRF) is a natural fibrin meshwork material with multiple functions that are suitable for tissue engineering applications. PRF provides a suitable scaffold for critical-size bone defect treatment due to its platelet cytokines and rich growth factors. However, the structure of PRF not only promotes cell attachment but also, due to its density, provides a pool for cell migration into the PRF to facilitate regeneration. In our study, we used repeated freeze drying to enlarge the pores of PRF to engineer large-pore PRF (LPPRF), a type of PRF that has expanded pores for cell migration. Moreover, a biodegradable Mg ring was used to provide stability to bone defects and the release of Mg ions during degradation may enhance osteoconduction and osteoinduction. Our results revealed that cell migration was more extensive when LPPRF was used rather than when PRF was used and that LPPRF retained the growth factors present in PRF. Moreover, the Mg ions released from the Mg ring during degradation significantly enhanced the calcium deposition of MC3T3-E1 preosteoblasts. In the present study, a bone substitute comprising LPPRF combined with a Mg ring was demonstrated to have much potential for critical-size bone defect repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070656PMC
http://dx.doi.org/10.3390/ijms22084022DOI Listing

Publication Analysis

Top Keywords

bone defect
12
cell migration
12
prf
9
platelet-rich fibrin
8
defect repair
8
critical-size bone
8
growth factors
8
prf lpprf
8
bone
5
large-pore platelet-rich
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!