Validation by Molecular Dynamics of the Major Components of Sugarcane Vinasse, On a Surface of Calcium Carbonate (Calcite).

Molecules

Departamento de Ciencias Químicas, Facultad de Ciencias Naturales, Universidad Icesi, Calle 18 # 122-135, Cali 760031, Colombia.

Published: April 2021

There is ongoing interest in the alcohol industry to significantly reduce and/or add value to the liquid residue, vinasse, produced after the distillation and rectification of ethanol from sugar cane. Vinasse contains potassium, glycerol, and a protein component that can cause environmental issues if improperly disposed of. Currently, some industries have optimized their processes to reduce waste, and a significant proportion of vinasse is being considered for use as an additive in other industrial processes. In the manufacture of cement and asphalt, vinasse has been used in the mixtures at low concentrations, albeit with some physical and mechanical problems. This work is the first molecular approximation of the components of the sugar cane vinasse in an industrial context, and it provides atomic details of complex molecular events. In the current study, the major components of sugar cane vinasse, alone or complexed on the surface of calcium carbonate, were modeled and simulated using molecular dynamics. The results showed that the protein component, represented by the mannoprotein Mp1p, has a high affinity for forming hydrogen bonds with potassium and glycerol in the vinasse. Additionally, it provides atomic stability to the calcium carbonate surface, preserving the calcite crystalline structure in the same way potassium ions interact with the carbonate group through ion-dipole interactions to improve the cohesion of the modeled surface. On the contrary, when the glycerol molecule interacts with calcium carbonate using more than two hydrogen bonds, it triggers the breakdown of the crystalline structure of calcite expanding the ionic pair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072639PMC
http://dx.doi.org/10.3390/molecules26082353DOI Listing

Publication Analysis

Top Keywords

calcium carbonate
16
sugar cane
12
cane vinasse
12
molecular dynamics
8
major components
8
vinasse
8
surface calcium
8
potassium glycerol
8
protein component
8
components sugar
8

Similar Publications

Enhanced mechanical properties of alkali-activated dolomite dust emulsified asphalt composites.

Sci Rep

December 2024

School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, China.

The dolomite dust-emulsified asphalt composite (DAC) with excellent mechanical properties was successfully prepared using alkali activation. The effects of different alkali concentrations and emulsified asphalt contents on the mechanical properties of the materials were studied. And the micro-mechanisms of its mechanical performance changes were analyzed through SEM and XRD characterization.

View Article and Find Full Text PDF

Because a significant portion of oil remains in carbonate reservoirs, efficient techniques are essential to increase oil recovery from carbonate reservoirs. Wettability alteration is crucial for enhanced oil recovery (EOR) from oil-wet reservoirs. This study investigates the impact of different substances on the wettability of dolomite and calcite rocks.

View Article and Find Full Text PDF

Boring bryozoans dissolve calcium carbonate substrates, leaving unique borehole traces. Depending on the shell type, borehole apertures and colony morphology can be diagnostic for distinguishing taxa, but to discriminate among species their combination with zooidal morphology is essential. All boring (endolithic) bryozoans are ctenostomes that, along with other boring taxa, are common in benthic communities.

View Article and Find Full Text PDF

Compression and water retention behavior of saline soil improved by MICP combined with activated carbon.

Sci Rep

December 2024

Department of Civil and Smart Construction Engineering, Shantou University, Shantou, 515063, Guangdong, China.

Saline soil is widely distributed in China and poses significant challenges to engineering construction due to its harmful effects, such as salt heaving, dissolution collapse, and frost heaving. The Microbial-Induced Calcite Precipitation (MICP) method is an emerging environmental-friendly modification that can reduce or eliminate the environmental and engineering hazards of saline soil. To verify the feasibility of the MICP method for improving the properties of saline soil, laboratory tests were conducted to study the effects of salt content, activated carbon content and freeze-thaw cycles on the compression and water retention behavior of MICP modified saline soil.

View Article and Find Full Text PDF

In the course of pipe jacking construction, the carrying-soil effect frequently arises, influenced by factors such as excavation unloading, ongoing disturbance from successive pipe sections, and the progressive accumulation of soil adhesion. The pipe jacking slurry serves as a critical agent for friction reduction and strata support, essential for the secure advancement of the construction process. This study introduces the Microbial-Induced Calcium Carbonate Precipitation (MICP) technology into the realm of pipe jacking slurry, aiming to enhance its friction-reduction capabilities and the stability of the soil enveloping the pipe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!