Inhalational Anesthetics Inhibit Neuroglioma Cell Proliferation and Migration via miR-138, -210 and -335.

Int J Mol Sci

Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK.

Published: April 2021

Inhalational anesthetics was previously reported to suppress glioma cell malignancy but underlying mechanisms remain unclear. The present study aims to investigate the effects of sevoflurane and desflurane on glioma cell malignancy changes via microRNA (miRNA) modulation. The cultured H4 cells were exposed to 3.6% sevoflurane or 10.3% desflurane for 2 h. The miR-138, -210 and -335 expression were determined with qRT-PCR. Cell proliferation and migration were assessed with wound healing assay, Ki67 staining and cell count kit 8 (CCK8) assay with/without miR-138/-210/-335 inhibitor transfections. The miRNA downstream proteins, hypoxia inducible factor-1α (HIF-1α) and matrix metalloproteinase 9 (MMP9), were also determined with immunofluorescent staining. Sevoflurane and desflurane exposure to glioma cells inhibited their proliferation and migration. Sevoflurane exposure increased miR-210 expression whereas desflurane exposure upregulated both miR-138 and miR-335 expressions. The administration of inhibitor of miR-138, -210 or -335 inhibited the suppressing effects of sevoflurane or desflurane on cell proliferation and migration, in line with the HIF-1α and MMP9 expression changes. These data indicated that inhalational anesthetics, sevoflurane and desflurane, inhibited glioma cell malignancy via miRNAs upregulation and their downstream effectors, HIF-1α and MMP9, downregulation. The implication of the current study warrants further study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122527PMC
http://dx.doi.org/10.3390/ijms22094355DOI Listing

Publication Analysis

Top Keywords

proliferation migration
16
sevoflurane desflurane
16
inhalational anesthetics
12
cell proliferation
12
mir-138 -210
12
-210 -335
12
glioma cell
12
cell malignancy
12
effects sevoflurane
8
desflurane exposure
8

Similar Publications

ALKBH5 suppresses gastric cancer tumorigenesis and metastasis by inhibiting the translation of uncapped WRAP53 RNA isoforms in an m6A-dependent manner.

Mol Cancer

January 2025

Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.

The N6-methyladenosine (m6A) modification serves as an essential epigenetic regulator in eukaryotic cells, playing a significant role in tumorigenesis and cancer progression. However, the detailed biological functions and underlying mechanisms of m6A regulation in gastric cancer (GC) are poorly understood. Our research revealed that the m6A demethylase ALKBH5 was markedly downregulated in GC tissues, which was associated with poor patient prognosis.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is the most common malignant urological tumor, and regrettably, and is insensitive to chemotherapy and radiotherapy, resulting in poor patient outcomes. DBF4 plays a critical role in DNA replication and participates in various biological functions, making it an attractive target for cancer treatment. However, its significance in ccRCC has not yet been explored.

View Article and Find Full Text PDF

Anticancer effect of the antirheumatic drug leflunomide on oral squamous cell carcinoma by the inhibition of tumor angiogenesis.

Discov Oncol

January 2025

Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.

Objectives: Leflunomide (LEF) is a conventional synthetic disease-modifying antirheumatic drug and suppresses T-cell proliferation and activity by inhibiting pyrimidine synthesis using dihydroorotase dehydrogenase (DHODH); however, several studies have demonstrated that LEF possesses anticancer and antiangiogenic effects in some malignant tumors. Therefore, we investigated the anticancer and antiangiogenic effects of LEF on oral squamous cell carcinoma (OSCC).

Methods: To evaluate the inhibitory effect of LEF on OSCC, cell proliferation and wound-healing assays using human OSCC cell lines were performed.

View Article and Find Full Text PDF

Donor-derived GD2-specific CAR T cells in relapsed or refractory neuroblastoma.

Nat Med

January 2025

Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy.

Allogeneic chimeric antigen receptor (CAR) T cells targeting disialoganglioside-GD2 (ALLO_GD2-CART01) could be a therapeutic option for patients with relapsed or refractory, high-risk neuroblastoma (r/r HR-NB) whose tumors did not respond to autologous GD2-CART01 or who have profound lymphopenia. We present a case series of five children with HR-NB refractory to more than three different lines of therapy who received ALLO_GD2-CART01 in a hospital exemption setting. Four of them had previously received allogeneic hematopoietic stem cell transplantation.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a predominant cause of cancer-related mortality globally, noted for its propensity towards late-stage diagnosis and scarcity of effective treatment modalities. The process of metabolic reprogramming, with a specific emphasis on lipid metabolism, is instrumental in the progression of HCC. Nevertheless, the precise mechanisms through which lipid metabolism impacts HCC and its viability as a therapeutic target have yet to be fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!