For serodiagnosis of foot-and-mouth disease virus (FMDV), monoclonal antibody (MAb)-based competitive ELISA (cELISA) is commonly used since it allows simple and reproducible detection of antibody response to FMDV. However, the use of mouse-origin MAb as a detection reagent is questionable, as antibody responses to FMDV in mice may differ in epitope structure and preference from those in natural hosts such as cattle and pigs. To take advantage of natural host-derived antibodies, a phage-displayed scFv library was constructed from FMDV-immune cattle and subjected to two separate pannings against inactivated FMDV type O and A. Subsequent ELISA screening revealed high-affinity scFv antibodies specific to a serotype (O or A) as well as those with pan-serotype specificity. When BvO17, an scFv antibody specific to FMDV type O, was tested as a detection reagent in cELISA, it successfully detected FMDV type O antibodies for both serum samples from vaccinated cattle and virus-challenged pigs with even higher sensitivity than a mouse MAb-based commercial FMDV type O antibody detection kit. These results demonstrate the feasibility of using natural host-derived antibodies such as bovine scFv instead of mouse MAb in cELISA for serological detection of antibody response to FMDV in the susceptible animals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122579PMC
http://dx.doi.org/10.3390/ijms22094328DOI Listing

Publication Analysis

Top Keywords

fmdv type
16
foot-and-mouth disease
8
disease virus
8
competitive elisa
8
fmdv
8
detection antibody
8
antibody response
8
response fmdv
8
detection reagent
8
natural host-derived
8

Similar Publications

[Transcriptomic differences between the spleens of mice immunized with inactivated antigens of foot-and-mouth disease virus and Senecavirus A].

Sheng Wu Gong Cheng Xue Bao

December 2024

National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.

The aim of this study was to compare the immune responses of C57BL/6 mice immunized with two pathogens, foot-and-mouth disease virus (FMDV) and Senecavirus A (SVA), and to provide clues for revealing the regulatory mechanisms of acquired immunity. Inactivated and purified FMDV and SVA antigens were used to immunize C57BL/6 mice respectively, and the mice immunized with PBS were taken as the control. The percentages of Th1 and Th2 cells in the spleen lymphocytes of mice in each group were analyzed by flow cytometry at 14 and 28 days after immunization.

View Article and Find Full Text PDF

Production of virus-like particles of FMDV by 3C protease cleaving precursor polyprotein P1 in vitro.

Appl Microbiol Biotechnol

December 2024

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.

Nonstructural protein 3C, a master protease of Picornaviridae, plays a critical role in viral replication by directly cleaving the viral precursor polyprotein to form the viral capsid protein and antagonizing the host antiviral response. Additionally, 3C protease, as a tool enzyme, is involved in regulating polyprotein expression. Here, the 3C mutant gene (3Cm), fused with a small ubiquitin-like modifier (SUMO) tag at the N-terminal and featuring a mutation at position 127, was inserted into the cold-shock plasmid pCold of Escherichia coli for expression.

View Article and Find Full Text PDF

Foot-and-mouth disease virus 2B protein antagonizes STING-induced antiviral activity by targeting YTHDF2.

FASEB J

December 2024

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.

Article Synopsis
  • * FMDV proteins 2B and 3C are found to decrease STING expression; 3C does this via its protease activity while 2B recruits YTHDF2 to halt STING mRNA production, enhancing viral replication.
  • * Mice lacking YTHDF2 showed stronger resistance to FMDV, highlighting the role of YTHDF2 in FMDV infection and suggesting new avenues for understanding immune evasion by the virus.
View Article and Find Full Text PDF

The high antigenic variability of the foot-and-mouth disease virus (FMDV) represents a challenge for developing prophylactic strategies, stressing the need for research into vaccines offering broad protection against a range of virus strains. Here, the heterotypic cross-reaction using different vaccine schemes against serotype O strains was studied, evaluating the impact of revaccination, antigen dose, and incorporation of additional FMDV serotypes. Naïve cattle were immunized with seven distinct FMDV vaccines, receiving three doses of the same formulation at 0, 28, and 56 days post-primary vaccination (dpv).

View Article and Find Full Text PDF

The first report of concurrent infection of hemorrhagic septicemia with foot and mouth disease in cattle in Bangladesh.

Comp Immunol Microbiol Infect Dis

December 2024

Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh. Electronic address:

This study aimed to investigate the concurrent infection of Pasteurella multocida (P. multocida) type B:2, which causes Hemorrhagic Septicemia (HS), with cases of Foot and Mouth Disease (FMD) outbreaks in cattle in Bangladesh between March and December 2023. Samples were collected from 11 distinct outbreak areas, totaling 102 samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!