Milk oligosaccharides (OS) shape microbiome structure and function, but their relative abundances differ between species. Herein, the impact of the human milk oligosaccharides (HMO) (2'-fucosyllactose [2'FL] and lacto-N-neotetraose [LNnT]) and OS isolated from bovine milk (BMOS) on microbiota composition and volatile fatty acid (VFA) concentrations in ascending colon (AC) contents and feces was assessed. Intact male piglets received diets either containing 6.5 g/L BMOS (n = 12), 1.0 g/L 2'FL + 0.5 g/L LNnT (HMO; n = 12), both (HMO + BMOS; n = 10), or neither (CON; n = 10) from postnatal day (PND) 2 to 34. Microbiota were assessed by 16S rRNA gene sequencing and real-time PCR, and VFA were measured by gas chromatography. The microbiota was affected by OS in an intestine region-specific manner. BMOS reduced ( < 0.05) microbial richness in the AC, microbiota composition in the AC and feces, and acetate concentrations in AC, regardless of HMO presence. HMO alone did not affect overall microbial composition, but increased ( < 0.05) the relative proportion of specific taxa, including , compared to other groups. abundance was increased ( < 0.05) in the AC by BMOS and synergistically by BMOS + HMO in the feces. Distinct effects of HMO and BMOS suggest complementary and sometimes synergistic benefits of supplementing a complex mixture of OS to formula.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8143120PMC
http://dx.doi.org/10.3390/microorganisms9050884DOI Listing

Publication Analysis

Top Keywords

milk oligosaccharides
16
microbiota composition
12
bovine milk
8
human milk
8
composition volatile
8
volatile fatty
8
fatty acid
8
hmo bmos
8
increased 005
8
hmo
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!