Bioprinting Via a Dual-Gel Bioink Based on Poly(Vinyl Alcohol) and Solubilized Extracellular Matrix towards Cartilage Engineering.

Int J Mol Sci

MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, 6229 Maastricht, The Netherlands.

Published: April 2021

Various hydrogel systems have been developed as biomaterial inks for bioprinting, including natural and synthetic polymers. However, the available biomaterial inks, which allow printability, cell viability, and user-defined customization, remains limited. Incorporation of biological extracellular matrix materials into tunable synthetic polymers can merge the benefits of both systems towards versatile materials for biofabrication. The aim of this study was to develop novel, cell compatible dual-component biomaterial inks and bioinks based on poly(vinyl alcohol) (PVA) and solubilized decellularized cartilage matrix (SDCM) hydrogels that can be utilized for cartilage bioprinting. In a first approach, PVA was modified with amine groups (PVA-A), and mixed with SDCM. The printability of the PVA-A/SDCM formulations cross-linked by genipin was evaluated. On the second approach, the PVA was functionalized with cis-5-norbornene-endo-2,3-dicarboxylic anhydride (PVA-Nb) to allow an ultrafast light-curing thiol-ene cross-linking. Comprehensive experiments were conducted to evaluate the influence of the SDCM ratio in mechanical properties, water uptake, swelling, cell viability, and printability of the PVA-based formulations. The studies performed with the PVA-A/SDCM formulations cross-linked by genipin showed printability, but poor shape retention due to slow cross-linking kinetics. On the other hand, the PVA-Nb/SDCM showed good printability. The results showed that incorporation of SDCM into PVA-Nb reduces the compression modulus, enhance cell viability, and bioprintability and modulate the swelling ratio of the resulted hydrogels. Results indicated that PVA-Nb hydrogels containing SDCM could be considered as versatile bioinks for cartilage bioprinting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069267PMC
http://dx.doi.org/10.3390/ijms22083901DOI Listing

Publication Analysis

Top Keywords

biomaterial inks
12
cell viability
12
based polyvinyl
8
polyvinyl alcohol
8
extracellular matrix
8
synthetic polymers
8
cartilage bioprinting
8
approach pva
8
pva-a/sdcm formulations
8
formulations cross-linked
8

Similar Publications

Decellularized cartilage tissue bioink formulation for osteochondral graft development.

Biomed Mater

January 2025

Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.

Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.

View Article and Find Full Text PDF

Robocasting calcium phosphate compounds as a novel approach to creating customized structures with interconnected pores not only overcomes the limitations of traditional fabrication methods of calcium phosphate substitutes but also boosts the potential for bone tissue regeneration. The ink development is a key step in 3D printing. In this study, different inks consisting of magnesium- and sodium-doped carbonated hydroxyapatite, β-tricalcium phosphate, and Pluronic F-127 were prepared to design biomimetic bone scaffolds.

View Article and Find Full Text PDF

Optimal parameter setting and evaluation for ultraviolet-assisted direct ink writing bioprinting of nHA/PEGDA scaffold.

Biomed Mater

December 2024

Department of Oral and Maxillofacial Surgery, First Hospital of Shanxi Medical University, Xinjian South Road 85#, Taiyuan, China, Taiyuan, 030001, CHINA.

Ultraviolet-assisted Direct Ink Writing(UV-DIW), an extrusion-based additive manufacturing technology, has emerged as a prominent 3D printing technique and is currently an important topic in bone tissue engineering research. This study focused on the printability of double-network (DN) bioink (Nano-hydroxyapatite/Polyethylene glycol diacrylate(nHA/PEGDA)). Next, we search for the optimal UV-DIW printing parameters for the scaffold formed by nHA-PEGDA.

View Article and Find Full Text PDF

From lab to life: advances inbioprinting and bioink technology.

Biomed Mater

December 2024

Additive Manufacturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Girinagar Pune-411025 Maharashtra, India.

Bioprinting has the potential to revolutionize tissue engineering and regenerative medicine, offering innovative solutions for complex medical challenges and addressing unmet clinical needs. However, traditionalbioprinting techniques face significant limitations, including difficulties in fabricating and implanting scaffolds with irregular shapes, as well as limited accessibility for rapid clinical application. To overcome these challenges,bioprinting has emerged as a groundbreaking approach that enables the direct deposition of cells, biomaterials, and bioactive factors onto damaged organs or tissues, eliminating the need for pre-fabricated 3D constructs.

View Article and Find Full Text PDF

The upcoming era of flexible and wearable electronics necessitates the development of low-cost, flexible, biocompatible substrates amenable to the fabrication of active devices such as electronic devices, sensors and transducers. While natural biopolymers such as Silk are robust and biocompatible, long-term flexibility is a concern due to the inherent brittle nature of soft Silk thin films. This work elucidates the preparation and characterization of Silk-polyurethane (Silk-PU) composite film that provides long-duration flexibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!