Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hepatitis B virus (HBV) contains three surface glycoproteins-Large-HBs (L-HBs), Middle-HBs (M-HBs), and Small-HBs (S-HBs), known to contribute to HBV-driven pro-oncogenic properties. Here, we examined the kinetics of HBs-isoforms in virologically-suppressed patients who developed or did not develop hepatocellular carcinoma (HCC). This study enrolled 30 chronically HBV-infected cirrhotic patients under fully-suppressive anti-HBV treatment. Among them, 13 patients developed HCC. Serum samples were collected at enrolment (T0) and at HCC diagnosis or at the last control for non-HCC patients (median (range) follow-up: 38 (12-48) months). Ad-hoc ELISAs were designed to quantify L-HBs, M-HBs and S-HBs (Beacle). At T0, median (IQR) levels of S-HBs, M-HBs and L-HBs were 3140 (457-6995), 220 (31-433) and 0.2 (0-1.7) ng/mL. No significant differences in the fraction of the three HBs-isoforms were noticed between patients who developed or did not develop HCC at T0. On treatment, S-HBs showed a >25% decline or remained stable in a similar proportion of HCC and non-HCC patients (58.3% of HCC- vs. 47.1% of non-HCC patients, = 0.6; 25% of HCC vs. 29.4% of non-HCC, = 0.8, respectively). Conversely, M-HBs showed a >25% increase in a higher proportion of HCC compared to non-HCC patients (50% vs. 11.8%, = 0.02), in line with M-HBs pro-oncogenic role reported in in vitro studies. No difference in L-HBs kinetics was observed in HCC and non-HCC patients. In conclusion, an increase in M-HBs levels characterizes a significant fraction of HCC-patients while under prolonged HBV suppression and stable/reduced total-HBs. The role of M-HBs kinetics in identifying patients at higher HCC risk deserves further investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065957 | PMC |
http://dx.doi.org/10.3390/microorganisms9040752 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!