Cyber-security of modern power systems has captured a significant interest. The vulnerabilities in the cyber infrastructure of the power systems provide an avenue for adversaries to launch cyber attacks. An example of such cyber attacks is False Data Injection Attacks (FDIA). The main contribution of this paper is to analyze the impact of FDIA on the cost of power generation and the physical component of the power systems. Furthermore, We introduce a new FDIA strategy that intends to maximize the cost of power generation. The viability of the attack is shown using simulations on the standard IEEE bus systems using the MATPOWER MATLAB package. We used the genetic algorithm (GA), simulated annealing (SA) algorithm, tabu search (TS), and particle swarm optimization (PSO) to find the suitable attack targets and execute FDIA in the power systems. The proposed FDIA increases the generation cost by up to 15.6%, 45.1%, 60.12%, and 74.02% on the 6-bus, 9-bus, 30-bus, and 118-bus systems, respectively. Finally, a rule-based FDIA detection and prevention mechanism is proposed to mitigate such attacks on power systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038276 | PMC |
http://dx.doi.org/10.3390/s21072478 | DOI Listing |
J Orthop Surg Res
January 2025
Excellence Center for Hip & Knee Arthroplasty, Department of Orthopedic Surgery, Zuyderland Medical Center, Heerlen, The Netherlands.
Introduction: In 2020, 368 million people globally were affected by knee osteoarthritis, and prevalence is projected to increase with 74% by 2050. Relatively high rates of dissatisfactory results after total knee arthroplasty (TKA), as reported by approximately 20% of patients, may be caused by sub-optimal knee alignment and balancing. While mechanical alignment has traditionally been the goal, patient-specific alignment strategies are gaining interest.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Engineering, Faculty of Engineering, Al-Azhar University, Cairo, Egypt.
This article presents an innovative asymmetric multilevel inverter (MLI) topology that outperforms conventional counterparts. The introduced topology presents a breakthrough in implementing power electronics control by maximizing specific levels while minimizing switching components. A cutting-edge control scheme for optimal operation of the cascaded half-bridge MLI is presented.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
Nanotechnology has experienced significant advancements, attracting considerable attention in various biomedical applications. This innovative study synthesizes and characterizes Ge/PLA/AuNCs (gelatin/PLA/gold nanocomposites) using Syzygium cumini extract to evaluate their various biomedical applications. The UV-Visible spectroscopy results in an absorption peak at 534 nm were primarily confirmed by Ge/PLA/AuNCs synthesis.
View Article and Find Full Text PDFISA Trans
January 2025
School of Information Science and Engineering, Chengdu University, Chengdu, 610106, PR China. Electronic address:
This article addresses the secure synchronization problem for complex dynamical networks (CDNs) with observer-based event-triggered communication strategy (ETCS) under multi-channel denial-of-service attacks (MCDSAs). Due to external environmental interference, the observers are designed to accurately estimate the state of the network systems. Meanwhile, the impact of cyber attacks on system security is considered.
View Article and Find Full Text PDFAnal Chem
January 2025
International Joint Laboratory for Integrated Circuits Design and Application, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
The photoacoustic spectroscopy (PAS) system commonly enhances the efficiency of optical-acoustic-electrical energy conversion by increasing the laser power, optimizing the resonance characteristics of the photoacoustic cell (PAC), and improving the sensitivity of acoustic sensors. However, conventional systems using a single-microphone or a dual-microphone differential setup for point sampling of the photoacoustic signal fail to account for its spatial distribution, leading to a loss of spatial gain. Drawing on microphone array theory derived from sonar technology, this study, for the first time, presents a PAS sensing system based on a four-microphone array, which is applied to detect chloroform gas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!