Boronic acids are prospective compounds in inhibition of metallo-β-lactamases as they form covalent adducts with the catalytic hydroxide anion in the enzymatic active site upon binding. We compare this chemical reaction in the active site of the New Delhi metallo-β-lactamase (NDM-1) with the hydrolysis of the antibacterial drug imipenem. The nucleophilic attack occurs with the energy barrier of 14 kcal/mol for imipenem and simultaneously upon binding a boronic acid inhibitor. A boron atom of an inhibitor exhibits stronger electrophilic properties than the carbonyl carbon atom of imipenem in a solution that is quantified by atomic Fukui indices. Upon forming the prereaction complex between NDM-1 and inhibitor, the lone electron pair of the nucleophile interacts with the vacant -orbital of boron that facilitates the chemical reaction. We analyze a set of boronic acid compounds with the benzo[b]thiophene core complexed with the NDM-1 and propose quantitative structure-sroperty relationship (QSPR) equations that can predict IC50 values from the calculated descriptors of electron density. These relations are applied to classify other boronic acids with the same core found in the database of chemical compounds, PubChem, and proposed ourselves. We demonstrate that the IC50 values for all considered benzo[b]thiophene-containing boronic acid inhibitors are 30-70 μM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038151PMC
http://dx.doi.org/10.3390/molecules26072026DOI Listing

Publication Analysis

Top Keywords

boronic acids
12
chemical reaction
12
active site
12
boronic acid
12
acids prospective
8
enzymatic active
8
ic50 values
8
boronic
6
prospective inhibitors
4
inhibitors metallo-β-lactamases
4

Similar Publications

Imine-containing azaarene-based triarylmethanes are vital molecular motifs that are prevalent in a wide array of bioactive compounds. Recognizing the limitations of current synthetic methodologies─marked by a scarcity of examples and difficulties in flexible functional group modulation─we have developed an efficient and modular asymmetric photochemical strategy employing pyridotriazoles and boronic acids as substrates. Utilizing novel chiral diamine-derived pyrroles and primary amines as catalysts, we successfully synthesized a diverse range of triarylmethanes with high yields and excellent enantioselectivities.

View Article and Find Full Text PDF

Toll-like receptor (TLRs) activation in multiple myeloma (MM) cells induces heterogeneous functional responses including cell growth and proliferation, survival or apoptosis. These effects have been suggested to be partly due to increase in secretion of cytokines such as IL-6 or IFNα among others from MM cells following TLR activation. However, whether triggering of these receptors also modulates production of immunoglobulin free light chains (FLCs), which largely contribute to MM pathology, has not been investigated in MM cells before.

View Article and Find Full Text PDF

Cutaneous T-cell lymphoma (CTCL) is a rare T-cell malignancy characterized by inflamed and painful rash-like skin lesions that may affect large portions of the body's surface. Patients experience recurrent infections due to a compromised skin barrier and generalized immunodeficiency resulting from a dominant Th2 immune phenotype of CTCL cells. Given the role of the unfolded protein response (UPR) in normal and malignant T-cell development, we investigated the impact of UPR-inducing drugs on the viability, transcriptional networks, and Th2 phenotype of CTCL.

View Article and Find Full Text PDF

Background: Multiple myeloma (MM) with Guillain-Barré syndrome (GBS) is relatively rare, and the specific mechanism is still unclear. The previous infection, surgery, and medication use may have contributed to the occurrence of GBS. The use of bortezomib in patients with MM can easily lead to peripheral neuropathy, which is similar to the symptoms of GBS, making it challenging to diagnose GBS.

View Article and Find Full Text PDF

Purpose: A comprehensive analysis of metabolites (metabolomics) has been proposed as a new strategy for analyzing liquid biopsies and has been applied to identify biomarkers predicting clinical responses or adverse events associated with specific treatments. Here, we aimed to identify metabolites associated with bortezomib (Btz)-related toxicities and response to treatment in newly diagnosed multiple myeloma (MM).

Methods: Fifty-four plasma samples from transplant-ineligible MM patients enrolled in a randomized phase II study comparing two less-intensive regimens of melphalan, prednisolone and Btz (MPB) were subjected to the lipidomic profiling analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!