A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deciphering the Methylation Landscape in Breast Cancer: Diagnostic and Prognostic Biosignatures through Automated Machine Learning. | LitMetric

AI Article Synopsis

  • DNA methylation is crucial in breast cancer (BrCa) development and could help tailor personalized treatment.
  • A comprehensive analysis identified between 11,176 and 27,786 differentially methylated genes (DMGs), leading to the creation of three efficient gene signatures for diagnosis and prognosis.
  • These signatures were validated for their effectiveness, with high accuracy in distinguishing between healthy individuals, metastatic disease, and early-stage BrCa, providing valuable insights into improving precision management for breast cancer.

Article Abstract

DNA methylation plays an important role in breast cancer (BrCa) pathogenesis and could contribute to driving its personalized management. We performed a complete bioinformatic analysis in BrCa whole methylome datasets, analyzed using the Illumina methylation 450 bead-chip array. Differential methylation analysis vs. clinical end-points resulted in 11,176 to 27,786 differentially methylated genes (DMGs). Innovative automated machine learning (AutoML) was employed to construct signatures with translational value. Three highly performing and low-feature-number signatures were built: (1) A 5-gene signature discriminating BrCa patients from healthy individuals (area under the curve (AUC): 0.994 (0.982-1.000)). (2) A 3-gene signature identifying BrCa metastatic disease (AUC: 0.986 (0.921-1.000)). (3) Six equivalent 5-gene signatures diagnosing early disease (AUC: 0.973 (0.920-1.000)). Validation in independent patient groups verified performance. Bioinformatic tools for functional analysis and protein interaction prediction were also employed. All protein encoding features included in the signatures were associated with BrCa-related pathways. Functional analysis of DMGs highlighted the regulation of transcription as the main biological process, the nucleus as the main cellular component and transcription factor activity and sequence-specific DNA binding as the main molecular functions. Overall, three high-performance diagnostic/prognostic signatures were built and are readily available for improving BrCa precision management upon prospective clinical validation. Revisiting archived methylomes through novel bioinformatic approaches revealed significant clarifying knowledge for the contribution of gene methylation events in breast carcinogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037759PMC
http://dx.doi.org/10.3390/cancers13071677DOI Listing

Publication Analysis

Top Keywords

breast cancer
8
automated machine
8
machine learning
8
signatures built
8
disease auc
8
functional analysis
8
brca
5
signatures
5
deciphering methylation
4
methylation landscape
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!