Data analytics based on the produced data from the Internet of Things (IoT) devices is expected to improve the individuals' quality of life. However, ensuring security and privacy in the IoT data aggregation process is a non-trivial task. Generally, the IoT data aggregation process is based on centralized servers. Yet, in the case of distributed approaches, it is difficult to coordinate several untrustworthy parties. Fortunately, the blockchain may provide decentralization while overcoming the trust problem. Consequently, blockchain-based IoT data aggregation may become a reasonable choice for the design of a privacy-preserving system. To this end, we propose PrivDA, a Privacy-preserving IoT Data Aggregation scheme based on the blockchain and homomorphic encryption technologies. In the proposed system, each data consumer can create a smart contract and publish both terms of service and requested IoT data. Thus, the smart contract puts together into one group potential data producers that can answer the consumer's request and chooses one aggregator, the role of which is to compute the group requested result using homomorphic computations. Therefore, group-level aggregation obfuscates IoT data, which complicates sensitive information inference from a single IoT device. Finally, we deploy the proposal on a private Ethereum blockchain and give the performance evaluation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037281PMC
http://dx.doi.org/10.3390/s21072452DOI Listing

Publication Analysis

Top Keywords

iot data
28
data aggregation
20
data
11
privacy-preserving iot
8
based blockchain
8
blockchain homomorphic
8
homomorphic encryption
8
iot
8
aggregation process
8
smart contract
8

Similar Publications

Family caregivers' perception of pressure ulcer prevention devices and equipment for patients with cerebrovascular and spinal disease.

Appl Nurs Res

February 2025

College of Nursing, Seoul National University, Seoul, Republic of Korea; Research Institute of Nursing Sciences, College of Nursing, Seoul National University, Seoul, Republic of Korea. Electronic address:

Background: Family caregivers play a crucial role in preventing pressure ulcers in patients with cerebrovascular and spinal diseases. Despite the availability of advanced devices, including Internet of Things(IoT) based smart mattresses, the adoption and effectiveness of these technologies are influenced by caregivers' experiences and perceptions.

Objective: To investigate the experiences and perceptions of family caregivers regarding pressure ulcer prevention devices and equipment, with a focus on the factors influencing the intention to adopt IoT-based smart mattresses.

View Article and Find Full Text PDF

Intelligent Intrusion Detection System Against Various Attacks Based on a Hybrid Deep Learning Algorithm.

Sensors (Basel)

January 2025

Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia.

The Internet of Things (IoT) has emerged as a crucial element in everyday life. The IoT environment is currently facing significant security concerns due to the numerous problems related to its architecture and supporting technology. In order to guarantee the complete security of the IoT, it is important to deal with these challenges.

View Article and Find Full Text PDF

This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.

View Article and Find Full Text PDF

Within the framework of 6G networks, the rapid proliferation of Internet of Things (IoT) devices, coupled with their decentralized and heterogeneous characteristics, presents substantial security challenges. Conventional centralized systems face significant challenges in effectively managing the diverse range of IoT devices, and they are inadequate in addressing the requirements for reduced latency and the efficient processing and analysis of large-scale data. To tackle these challenges, this paper introduces a zero-trust access control framework that integrates blockchain technology with inner-product encryption.

View Article and Find Full Text PDF

With the proliferation of mobile terminals and the rapid growth of network applications, fine-grained traffic identification has become increasingly challenging. Methods based on machine learning and deep learning have achieved remarkable results, but they heavily rely on the distribution of training data, which makes them ineffective in handling unseen samples. In this paper, we propose AG-ZSL, a zero-shot learning framework based on traffic behavior and attribute representations for general encrypted traffic classification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!