Cavity-BOX SOI: Advanced Silicon Substrate with Pre-Patterned BOX for Monolithic MEMS Fabrication.

Micromachines (Basel)

The Electronic Components, Technology and Materials (ECTM) Group, Delft University of Technology, Mekelweg 5, 2628 CD Delft, The Netherlands.

Published: April 2021

AI Article Synopsis

  • Several Silicon on Insulator (SOI) wafer manufacturers are now offering products with customer-defined cavities, simplifying the fabrication process for MEMS devices like pressure sensors.
  • This paper introduces a novel cavity buried oxide (BOX) SOI substrate that features a patterned BOX layer, allowing for improved patterning and etching techniques in microfabrication.
  • The use of cavity-BOX is illustrated through the fabrication of a deep brain stimulation device, showing that it enhances design flexibility and simplifies the creation of complex MEMS devices.

Article Abstract

Several Silicon on Insulator (SOI) wafer manufacturers are now offering products with customer-defined cavities etched in the handle wafer, which significantly simplifies the fabrication of MEMS devices such as pressure sensors. This paper presents a novel cavity buried oxide (BOX) SOI substrate (cavity-BOX) that contains a patterned BOX layer. The patterned BOX can form a buried microchannels network, or serve as a stop layer and a buried hard-etch mask, to accurately pattern the device layer while etching it from the backside of the wafer using the cleanroom microfabrication compatible tools and methods. The use of the cavity-BOX as a buried hard-etch mask is demonstrated by applying it for the fabrication of a deep brain stimulation (DBS) demonstrator. The demonstrator consists of a large flexible area and precisely defined 80 µm-thick silicon islands wrapped into a 1.4 mm diameter cylinder. With cavity-BOX, the process of thinning and separating the silicon islands was largely simplified and became more robust. This test case illustrates how cavity-BOX wafers can advance the fabrication of various MEMS devices, especially those with complex geometry and added functionality, by enabling more design freedom and easing the optimization of the fabrication process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070108PMC
http://dx.doi.org/10.3390/mi12040414DOI Listing

Publication Analysis

Top Keywords

fabrication mems
8
mems devices
8
patterned box
8
buried hard-etch
8
hard-etch mask
8
silicon islands
8
cavity-box
5
fabrication
5
cavity-box soi
4
soi advanced
4

Similar Publications

Warping is a crucial process that connects two main stages of production: yarn manufacturing and fabric creation. Two interrelated parameters affect the efficiency of this technological process: warping speed and the ability to swiftly detect the yarn breaks caused by various defects. The faster a break is detected and the warping machine stopped, the higher the machine's working speed can be.

View Article and Find Full Text PDF

Design of Interface ASIC with Power-Saving Switches for Capacitive Accelerometers.

Micromachines (Basel)

January 2025

College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China.

High-precision, low-power MEMS accelerometers are extensively utilized across civilian applications. Closed-loop accelerometers employing switched-capacitor (SC) circuit topologies offer notable advantages, including low power consumption, high signal-to-noise ratio (SNR), and excellent linearity. Addressing the critical demand for high-precision, low-power MEMS accelerometers in modern geophones, this work focuses on the design and implementation of closed-loop interface ASICs (Application-Specific Integrated Circuits).

View Article and Find Full Text PDF

Microelectromechanical systems (MEMS) refer to miniaturized mechanical and electro-mechanical elements that are fabricated through microelectronic processes [...

View Article and Find Full Text PDF

The development of low-temperature piezoresistive materials provides compatibility with standard silicon-based MEMS fabrication processes. Additionally, it enables the use of such material in flexible substrates, thereby expanding the potential for various device applications. This work demonstrates, for the first time, the fabrication of a 200 nm polycrystalline silicon thin film through a metal-induced crystallization process mediated by an AlSiCu alloy at temperatures as low as 450 °C on top of silicon and polyimide (PI) substrates.

View Article and Find Full Text PDF

MEMS Smart Glass with Larger Angular Tuning Range and 2D Actuation.

Micromachines (Basel)

December 2024

Institute of Nanostructure Technologies and Analytics (INA), Technological Electronics Department and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany.

Millions of electrostatically actuatable micromirror arrays have been arranged in between windowpanes in inert gas environments, enabling active daylighting in buildings for illumination and climatization. MEMS smart windows can reduce energy consumption significantly. However, to allow personalized light steering for arbitrary user positions with high flexibility, two main limitations must be overcome: first, limited tuning angle spans by MEMS pull-in effects; and second, the lack of a second orthogonal tuning angle, which is highly required.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!