CD9 plays a crucial role in cellular growth, mobility, and signal transduction, as well as in hematological malignancy. In myeloid neoplasms, CD9 is involved in the altered interactions between leukemic and stromal cells. However, apart from its role in CD34 progenitors and myeloid and megakaryocytic differentiation, its function in normal and leukemic pluripotent cells has not yet been determined. Very small embryonic-like stem cells (VSELs) are promising pluripotent stem cells found in adult tissues that can be developed for safe and efficient regenerative medicine. VSELs express different surface receptors of the highest importance in cell functioning, including CD9, and can be effectively mobilized after organ injury or in leukemic patients. In the present study, we observed that CD9 is among the most expressed receptors in VSELs under steady-state conditions; however, once the VSELs are expanded, CD9 VSELs decrease and are more apoptotic. CD9 VSELs had no proliferative improvement in vitro compared to those that were CD9. Interestingly, the addition of SDF-1 induced CD9 expression on the surface of VSELs, as observed by flow cytometry, and improved their migration. In addition, we observed, in the phenotypically identical VSELs present in the peripheral blood of patients with myeloproliferative neoplasms, compared to healthy subjects, a significantly higher number of CD9 cells. However, in their hematopoietic stem cell (HSC) counterparts, the expression remained comparable. These results indicate that, likewise, in progenitors and mature cells, CD9 may play an important function in normal and malignant VSELs. This could explain the refractoriness observed by some groups of expanded stem cells to repairing efficiently damaged tissue when used as a source in cell therapies. Understanding the function of the CD9 receptor in normal and malignant CD34 and VSELs, along with its relationship with the CXCR4/SDF-1 pathway, will enable advances in the field of adult pluripotent cell usage in regenerative medicine and in their role in leukemia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070267 | PMC |
http://dx.doi.org/10.3390/biology10040312 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Paris 75252, France.
Although silicon is a widespread constituent in dental materials, its possible influence on the formation and repair of teeth remains largely unexplored. Here, we studied the effect of two silicic acid-releasing nanomaterials, silica and bioglass, on a living model of pulp consisting of dental pulp stem cells seeded in dense type I collagen hydrogels. Silica nanoparticles and released silicic acid had little effect on cell viability and mineralization efficiency but impacted metabolic activity, delayed matrix remodeling, and led to heterogeneous cell distribution.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University Taoyuan 33305, Taiwan.
Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated cancer, and immune checkpoint inhibitors (ICIs) have shown efficacy in its treatment. The combination of chemotherapy and ICIs represents a new trend in the standard care for metastatic NPC. In this study, we aim to clarify the immune cell profile and related prognostic factors in the ICI-based treatment of metastatic NPC.
View Article and Find Full Text PDFBreast Cancer (Auckl)
January 2025
Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
Background: Circulating rare cells participate in breast cancer evolution as systemic components of the disease and thus, are a source of theranostic information. Exploration of cancer-associated rare cells is in its infancy.
Objectives: We aimed to investigate and classify abnormalities in the circulating rare cell population among early-stage breast cancer patients using fluorescence marker identification and cytomorphology.
J Mol Cell Cardiol Plus
September 2024
Department of Pathology, Amsterdam University Medical Centres (AUMC), Location VUmc, Amsterdam, the Netherlands.
Aims: Diabetes mellitus (DM) induces increased inflammation of atherosclerotic plaques, resulting in elevated plaque instability. Mesenchymal stem cell (MSC) therapy was shown to decrease plaque size and increase stability in non-DM animal models. We now studied the effect of MSC therapy in a streptozotocin-induced hyperglycaemia mouse model using a clinically relevant dose of adipose tissue-derived MSCs (ASCs).
View Article and Find Full Text PDFInjured epithelial organs must rapidly replace damaged cells to restore barrier integrity and physiological function. In response, injury-born stem cell progeny differentiate faster compared to healthy-born counterparts, yet the mechanisms that pace differentia-tion are unclear. Using the adult Drosophila intestine, we find that injury speeds cell differentiation by altering the lateral inhibition circuit that transduces a fate-determin-ing Notch signal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!