Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In recent years, remote sensing images has become one of the most popular directions in image processing. A small feature gap exists between satellite and natural images. Therefore, deep learning algorithms could be applied to recognize remote sensing images. We propose an improved Mask R-CNN model, called SCMask R-CNN, to enhance the detection effect in the high-resolution remote sensing images which contain the dense targets and complex background. Our model can perform object recognition and segmentation in parallel. This model uses a modified SC-conv based on the ResNet101 backbone network to obtain more discriminative feature information and adds a set of dilated convolutions with a specific size to improve the instance segmentation effect. We construct WFA-1400 based on the DOTA dataset because of the shortage of remote sensing mask datasets. We compare the improved algorithm with other state-of-the-art algorithms. The object detection AP and AP increased by 1-2% and 1%, respectively, objectively proving the effectiveness and the feasibility of the improved model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068277 | PMC |
http://dx.doi.org/10.3390/s21082618 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!