AI Article Synopsis

Article Abstract

Objective: To develop a mentor-supervised, interprofessional, geriatric telemedicine experiential education project in response to the COVID-19 pandemic.

Method: Medical and pharmacy students collaborated via remote consultations to address the coexistence of multimorbidity and polypharmacy in geriatric patients. In-depth interviews of students and patients as well as Likert scale-based telephonic survey were performed for a comprehensive evaluation of the project's significance.

Results: To date, 49 consultations have been conducted. Remote consultations performed by medical and pharmacy students working collaboratively were beneficial for both students, participants.

Conclusions And Practice Implications: This experimental education project provided students with authentic challenges while simultaneously delivering care to the older adults who are susceptible to disruption of care associated with the pandemic. Further development and expanded implementation of such approaches may be a post-pandemic practice to provide more accessible care for senior patients while incorporating interprofessional education.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067444PMC
http://dx.doi.org/10.3390/healthcare9040425DOI Listing

Publication Analysis

Top Keywords

education project
12
experimental education
8
older adults
8
medical pharmacy
8
pharmacy students
8
remote consultations
8
students
5
consultations
4
project consultations
4
consultations older
4

Similar Publications

Background: The significance of tactile stimulation in human social development and personal interaction is well documented; however, the underlying cerebral processes remain under-researched. This study employed functional magnetic resonance imaging (fMRI) to investigate the neural correlates of social touch processing, with a particular focus on the functional connectivity associated with the aftereffects of touch.

Methods: A total of 27 experimental subjects were recruited for the study, all of whom underwent a 5-minute calf and foot massage prior to undergoing resting-state fMRI.

View Article and Find Full Text PDF

Testing for myelin oligodendrocyte glycoprotein immunoglobulin G antibodies (MOG-IgG) is essential to the diagnosis of MOG antibody-associated disease (MOGAD). Due to its central role in the evaluation of suspected inflammatory demyelinating disease, the last 5 years has been marked by an abundance of research into MOG-IgG testing ranging from appropriate patient selection, to assay performance, to utility of serum titers as well as cerebrospinal fluid (CSF) testing. In this review, we synthesize current knowledge pertaining to the "who, what, where, when, why, and how" of MOG-IgG testing, with the aim of facilitating accurate MOGAD diagnosis in clinical practice.

View Article and Find Full Text PDF

Targeting Brain Drug Delivery with Macromolecules Through Receptor-Mediated Transcytosis.

Pharmaceutics

January 2025

Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China.

Brain diseases pose significant treatment challenges due to the restrictive nature of the blood-brain barrier (BBB). Recent advances in targeting macromolecules offer promising avenues for overcoming these obstacles through receptor-mediated transcytosis (RMT). We summarize the current progress in targeting brain drug delivery with macromolecules for brain diseases.

View Article and Find Full Text PDF

: (PG) has been widely researched as a conductant drug for the treatment of lung diseases by ancient and modern traditional Chinese medicine (TCM) practitioners. Inspired by the mechanism and our previous finding about fructans and fructooligosaccharides from (FFPG), we developed a nano drug delivery system (NDDS) targeting lung cancer. The aim was to improve the efficiency of the liposomal delivery of Paclitaxel (PTX) and enhance the anti-tumor efficacy.

View Article and Find Full Text PDF

The frequent occurrence of extreme weather conditions in the world has brought many unfavorable factors to plant growth, causing the growth and development of plants to be hindered and even leading to plant death, with abiotic stress hindering the growth and metabolism of plants due to severe uncontrollability. The WHY1 transcription factor plays a critical role in regulating gene expression in plants, influencing chlorophyll biosynthesis, plant growth, and development, as well as responses to environmental stresses. The important role of the gene in regulating plant growth and adaptation to environmental stress has become a hot research topic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!