Utilizing agro-waste material such as rice husk (RH) and coco peat (CP) reinforced with thermoplastic resin to produce low-cost green composites is a fascinating discovery. In this study, the effectiveness of these blended biocomposites was evaluated for their physical, mechanical, and thermal properties. Initially, the samples were fabricated by using a combination of melt blend internal mixer and injection molding techniques. Increasing in RH content increased the coupons density. However, it reduced the water vapor kinetics sorption of the biocomposite. Moisture absorption studies disclosed that water uptake was significantly increased with the increase of coco peat (CP) filler. It showed that the mechanical properties, including tensile modulus, flexural modulus, and impact strength of the 15% RH-5% CP reinforced acrylonitrile-butadiene-styrene (ABS), gave the highest value. Results also revealed that all RH/CP filled composites exhibited a brittle fracture manner. Observation on the tensile morphology surfaces by using a scanning electron microscope (SEM) affirmed the above finding to be satisfactory. Therefore, it can be concluded that blend-agriculture waste reinforced ABS biocomposite can be exploited as a biodegradable material for short life engineering application where good mechanical and thermal properties are paramount.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038664PMC
http://dx.doi.org/10.3390/polym13071171DOI Listing

Publication Analysis

Top Keywords

peat reinforced
8
coco peat
8
mechanical thermal
8
thermal properties
8
physicomechanical properties
4
properties rice
4
rice husk/coco
4
husk/coco peat
4
reinforced
4
reinforced acrylonitrile
4

Similar Publications

Plant Adaptation and Soil Shear Strength: Unraveling the Drought Legacy in .

Plants (Basel)

January 2025

Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.

Climate change has led to an increasing frequency of droughts, potentially undermining soil stability. In such a changing environment, the shallow reinforcement effect of plant roots often fails to meet expectations. This study aims to explore whether this is associated with the alteration of plant traits as a response to environmental change.

View Article and Find Full Text PDF

Background: In this study, the unconfined compressive strength (q) of a mixture consisting of clay reinforced with 24 mm-long basalt fiber was estimated using extreme learning machine (ELM). The aim of this study is to estimate the results closest to the data obtained through experimental studies without the need for experimental studies. The literature review reveals that the ELM technique has not been applied to predict the compressive strength of basalt fiber-reinforced clay, and this study aims to provide a novel contribution in this area.

View Article and Find Full Text PDF

With the rapid development of infrastructure construction on oceanic reefs, calcareous sand, as the primary medium of these reefs, exhibits unique physical and mechanical properties such as high void ratio, low strength, and susceptibility to particle breakage. These characteristics reduce the bearing capacity and stability of pile foundations in calcareous sand foundations. This study investigates the bearing characteristics of high-strength preloaded expansion piles in calcareous sand foundations, taking into account the influence of HSCA high-performance expansion agent dosage through a series of indoor model tests and in-situ tests.

View Article and Find Full Text PDF

Urbanization and infrastructure projects generate huge amount of construction and demolition waste (CDW), posing significant challenges for the environment and human health. In order to reduce the environment and safety risks caused by the CDW landfills, this study was amid to utilize plant roots to develop a root-CDW-soil system for strengthening the CDW and enhancing the slope stability of CDW landfills. A series of experimental analyses were conducted, focusing on shear tests of root-soil composites under various moisture conditions and root content ratios.

View Article and Find Full Text PDF

Adoption intensity of soil and water conservation techniques in Burkina Faso is influenced by farmers' preferences for their attributes.

Sci Rep

January 2025

Center for Economic and Social Studies, Documentation and Research (CEDRES), Thomas Sankara University (UTS), 12 BP 417, Ouagadougou 12, Burkina Faso.

Soil degradation is a major cause of agricultural productivity decrease in sub-Saharan Africa. In Burkina Faso, efforts to reduce this environmental issue has emerged since several decades. However, most of the techniques developed are rarely adopted by farmers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!