The interest in self-healing, recyclable, and adaptable polymers is growing. This work addresses the reversibility of crosslink formation based on Diels-Alder reaction in copolymer networks containing furfuryl and maleimide groups, which represent the "diene" and the "dienophile," respectively. The copolymers are synthesized by atom transfer radical polymerization (ATRP) and free radical polymerization. The diene bearing copolymers are crosslinked either with a small molecule containing two dienophiles or with a dienophile bearing copolymer. The influence of the crosslinking temperature on the Diels-Alder reaction is analyzed. Furthermore, the influence of the glass transition temperature and the influence of the density of crosslinking groups on the thermo-reversibility of crosslinking are investigated by temperature dependent infrared spectroscopy and differential scanning calorimetry. It is shown that the reversibility of crosslinking is strongly influenced by the glass transition temperature of the system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067813PMC
http://dx.doi.org/10.3390/polym13081189DOI Listing

Publication Analysis

Top Keywords

glass transition
12
transition temperature
12
influence glass
8
density crosslinking
8
crosslinking groups
8
diels-alder reaction
8
radical polymerization
8
temperature
5
crosslinking
5
influence
4

Similar Publications

The incorporation of a glassy material into a self-assembled nanoparticle (NP) film can produce highly loaded nanocomposites. Reduction of the NP diameter can lead to extreme nanoconfinement of the glass, significantly affecting the thermal and physical properties of the nanocomposite material. Here, we investigate the photostability and photodegradation mechanisms of molecular nanocomposite films (MNCFs) produced from the infiltration of indomethacin (IMC) molecules into self-assembled films of silica NPs (11-100 nm in diameter).

View Article and Find Full Text PDF

The Photoinduced Response of Antimony from Femtoseconds to Minutes.

Adv Mater

January 2025

Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Str. 10, 48149, Münster, Germany.

As a phase change material (PCM), antimony exhibits a set of desirable properties that make it an interesting candidate for photonic memory applications. These include a large optical contrast between crystalline and amorphous solid states over a wide wavelength range. Switching between the states is possible on nanosecond timescales by applying short heating pulses.

View Article and Find Full Text PDF

Cryoprotective agent (CPA) toxicity is the most limiting factor impeding cryopreservation of critically needed tissues and organs for transplantation and medical research. This limitation is in part due to the challenge of rapidly screening compounds to identify candidate molecules that are highly membrane permeable and non-toxic at high concentrations. Such a combination would facilitate rapid CPA permeation throughout the sample, enabling ice-free cryopreservation with minimal toxicity.

View Article and Find Full Text PDF

The development of materials from renewable resources has been increasing, intending to reduce the consumption of fossil sources, with terpenes being one of the main families that reduce the consumption of isoprene. The study of the binary catalytic system neodymium versatate/dibutyl magnesium (NdV/Mg(-Bu)), for the coordination homopolymerization of β-myrcene and β-farnesene, was carried out analysing different [Nd] : [Mg] ratios (between 4 and 10). Reporting conversions of 92% and 83% at an [Nd] : [Mg] ratio of 8 for polymyrcene (PMy) and polyfarnesene (PFa), respectively, and microstructures comprising 1,4 content above 80% for both polymers (PMy, -59% and PFa, -83%).

View Article and Find Full Text PDF

The ability to convert light to higher energies through triplet-triplet annihilation upconversion (TTA-UC) is attractive for a range of applications including solar energy harvesting, bioimaging and anti-counterfeiting. Practical applications require integration of the TTA-UC chromophores within a suitable host, which leads to a compromise between the high upconversion efficiencies achievable in liquids and the durability of solids. Herein, we present a series of methacrylate copolymers as TTA-UC hosts, in which the glass transition temperature ( ), and hence upconversion efficiency can be tuned by varying the co-monomer ratios (-hexyl methacrylate (HMA) and 2,2,2-trifluoroethyl methacrylate (TFEMA)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!