Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In China, research on winter heating and energy saving for residential buildings mainly focuses on urban residences rather than rural ones. According to the 2018 China Building Energy Consumption Research Report, rural residential buildings emit about 423 million tons of carbon, accounting for 21% of the country's total carbon emissions. According to the research on China's greenhouse gas inventory, the main sources of carbon emissions in rural areas are from cooking and the burning of fuelwood and biomass for heating in winter. In this study, the southern Shaanxi area, which is hot in summer and cold in winter, was selected as the research site, and a fire wall system was planned that combines cooking and heating facilities in residential buildings. The system uses the heat generated by cooking and the heat storage capacity of the wall, as well as the principle of thermal radiation and heat convection, to increase the indoor temperature. The advantage is that the hot air generated is mainly concentrated in the inside of the wall, which reduces the direct contact with the cold outdoor air and avoids excess heat loss. In this study, in addition to considering the influence of the cooking fire wall system on the indoor temperature, the difference in the outer wall with or without solar thermal radiation was also considered. The research results show that the use of a cooking fire wall heating system reduces the annual heat load of the building to 440.8318 KW·h, which is a reduction rate of 7.91%. When there is solar radiation on the outer wall, the annual thermal load of the building is reduced by 1104.723 kW·h, and the reduction rate is 19.84%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038374 | PMC |
http://dx.doi.org/10.3390/ijerph18073745 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!