One of the characteristic features of tunneling magnetoresistance (TMR) sensors is a strong influence of bias voltage on tunneling current. Since fundamental sensing characteristics of the sensors are primarily determined by the tunneling current, the bias voltage should impact these characteristics. Previous research has indeed showed the influence of the bias voltage on the magnetic field detection and sensitivity. However, the effect has not been investigated for nonlinearity and hysteresis and the influence of bias voltage polarity has not yet been addressed. Therefore, this paper systematically investigates the dependence of field sensitivity, nonlinearity, hysteresis and magnetic field detection of CoFeB/MgO/CoFeB-based magnetoresistance sensors on bias voltage magnitude and polarity. The sensitivity and field detection of all sensors improved significantly with the bias, whereas the nonlinearity and hysteresis deteriorated. The sensitivity increased considerably (up to 32 times) and linearly with bias up to 0.6 V. The field detection also decreased substantially (up 3.9 times) with bias and exhibited the minimum values for the same magnitude under both polarities. Significant and linear increases with bias were also observed for nonlinearity (up to 26 times) and hysteresis (up to 33 times). Moreover, not only the voltage magnitude but also the polarity had a significant effect on the sensing characteristics. This significant, linear and simultaneous effect of improvement and deterioration of the sensing characteristics with bias indicates that both bias voltage magnitude and polarity are key factors in the control and modification of these characteristics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038319 | PMC |
http://dx.doi.org/10.3390/s21072495 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Electrical Engineering and Computer Science (EECS), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
A transistor design employing all vertically stacked components has attracted considerable attention due to the simplicity of the fabrication process and the high conductivity easily realized by achieving nanolevel short channel lengths with two-dimensional current paths. However, fundamental issues, specifically the blocking of the gate electrical field to the semiconductive channel layer and high leakage current at the "off" state, have impeded this configuration in becoming a major transistor design. To address these issues, it has been proposed to introduce a blocking layer (BL) with embedded hole structures and source electrode with embedded hole structures, enhancing gate field penetration and carrier modulation.
View Article and Find Full Text PDFSci Rep
January 2025
Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
Borophene, as a new material with various configurations, has attracted significant research attention in recent years. In this study, the electronic properties of a series of χ-type borophene nanoribbons (BNRs) are investigated using a first-principles approach. The results show that the width and edge pattern of the nanoribbons can effectively tune their electronic properties.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China.
Two-dimensional (2D) organic-inorganic halide perovskites are promising sensitive materials for optoelectronic applications due to their strong light-matter interactions, layered structure, long carrier lifetime and diffusion length. However, a high gate bias is indispensable for perovskite-based phototransistors to optimize detection performances, since ion migration seriously screens the gate electric field and the deposition process introduces intrinsic defects, which induces severe leakages and large power dissipation. In this work, an ultrasensitive phototransistor based on the (PEA)SnI perovskite and the Al:HfO ferroelectric layer is meticulously studied, working without an external gate voltage.
View Article and Find Full Text PDFNanotechnology
January 2025
Radiophysics, Tomsk State University, Lenin, 36, Tomsk, Tomsk region, 634050, RUSSIAN FEDERATION.
Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran.
This study investigates the nonlinear dynamics of a system with frequency-dependent stiffness using a MEMS-based capacitive inertial sensor as a case study. The sensor is positioned directly on a rotating component of a machine and consists of a microbeam clamped at both ends by fixed supports with a fixed central proof mass. The nonlinear behavior is determined by electrostatic forces, axial and bending motion coupling, and frequency-dependent stiffness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!