New measures applied to reduce antimicrobial resistances (AMR) at field level in broiler production are focused on improving animals' welfare and resilience. However, it is necessary to have better knowledge of AMR epidemiology. Thus, the aim of this study was to evaluate AMR and multidrug resistance (MDR) dynamics during the rearing of broilers under commercial (33 kg/m density and max. 20 ppm ammonia) and improved (17 kg/m density and max. 10 ppm ammonia) farm conditions. Day-old chicks were housed in two poultry houses (commercial vs. improved), and no antimicrobial agents were administered at any point. Animals were sampled at arrival day, mid-period and at slaughter day. High AMR rates were observed throughout rearing. No statistical differences were observed between groups. Moreover, both groups presented high MDR at slaughter day. These results could be explained by vertical or horizontal resistance acquisition. In conclusion, AMR and MDR are present throughout rearing. Moreover, although a lower level of MDR was observed at mid-period in animals reared under less intensive conditions, no differences were found at the end. In order to reduce the presence of AMR bacteria in poultry, further studies are needed to better understand AMR acquisition and prevalence in differing broiler growing conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066766 | PMC |
http://dx.doi.org/10.3390/ani11041005 | DOI Listing |
Poult Sci
December 2024
Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA 72701. Electronic address:
Fast growth rate and stocking density are global animal welfare concerns for broiler chickens. The objective of this study was to evaluate the effect of genetic strain and stocking density on the behavior of broilers. In a 2 × 2 randomized complete block design, conventional (CONV) and slow-growing (SG) broilers were stocked at either 29 kg/m (LO, n = 31 birds/pen) or 37 kg/m (HI, n = 40 birds/pen) in 16 pens (n = 4 pens/treatment).
View Article and Find Full Text PDFSci Rep
December 2024
INRAE, Université de Tours, BOA, 37380, Nouzilly, France.
Chicken meat production in organic systems involves free-range access where animals can express foraging and locomotor behaviours. These behaviours may promote outdoor feed intake, but at the same time energy expenditure when exploring the outdoor area. More generally, the relationship of range use with metabolism, welfare including health, growth performance and meat quality needs to be better understood.
View Article and Find Full Text PDFVet Sci
December 2024
Department of Monogastric Animals, Institute of Animal Science, Central Highway km 47 ½, San José de las Lajas C.P. 32700, Mayabeque, Cuba.
A total of 640 one-day-old Cobb 500 MV × Cobb 500 FF mixed broilers were randomly assigned to one of four experimental treatments with four replicates per treatment and 40 birds per replicate for 32 days. The treatments consisted of a basal diet (control group), basal diet + 0.02% zinc bacitracin (AGP group), basal diet + 0.
View Article and Find Full Text PDFPoult Sci
November 2024
Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
This study aimed to discover how using nano artichoke leaf extract Stabilized with zinc Nanoparticles (ZnO-Nano-ALPE) as an alternative to antibiotics and an antioxidant in broiler feed affected their growth, meat quality, and blood. In a completely randomized design experiment, 210 1-day-old chicks (Arbor Acres) were assigned to three trial groups. Each group was subdivided into seven replicates, each with ten unsexed chicks.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Wageningen Livestock Research, Wageningen University & Research, Wageningen, Netherlands.
Recently, the Netherlands has shifted toward more welfare-friendly broiler production systems using slower-growing broiler breeds. Early post-hatch feeding (EF) is a dietary strategy that is currently used in commercial broiler production to modulate the gut microbiota and improve performance and welfare. However, there is a knowledge gap in how both breed and EF and their interplay affect gut microbiota composition and diversity, inflammatory status, and broiler behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!