Pedestrian fatalities and injuries most likely occur in vehicle-pedestrian crashes. Meanwhile, engineers have tried to reduce the problems by developing a pedestrian detection function in Advanced Driver-Assistance Systems (ADAS) and autonomous vehicles. However, the system is still not perfect. A remaining problem in pedestrian detection is the performance reduction at nighttime, although pedestrian detection should work well regardless of lighting conditions. This study presents an evaluation of pedestrian detection performance in different lighting conditions, then proposes to adopt multispectral image and deep neural network to improve the detection accuracy. In the evaluation, different image sources including RGB, thermal, and multispectral format are compared for the performance of the pedestrian detection. In addition, the optimizations of the architecture of the deep neural network are performed to achieve high accuracy and short processing time in the pedestrian detection task. The result implies that using multispectral images is the best solution for pedestrian detection at different lighting conditions. The proposed deep neural network accomplishes a 6.9% improvement in pedestrian detection accuracy compared to the baseline method. Moreover, the optimization for processing time indicates that it is possible to reduce 22.76% processing time by only sacrificing 2% detection accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038561 | PMC |
http://dx.doi.org/10.3390/s21072536 | DOI Listing |
J Imaging
January 2025
Science and Research Department, Moscow Technical University of Communications and Informatics, 111024 Moscow, Russia.
Object detection in images is a fundamental component of many safety-critical systems, such as autonomous driving, video surveillance systems, and robotics. Adversarial patch attacks, being easily implemented in the real world, provide effective counteraction to object detection by state-of-the-art neural-based detectors. It poses a serious danger in various fields of activity.
View Article and Find Full Text PDFSci Rep
January 2025
Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia.
With the global population surpassing 8 billion, waste production has skyrocketed, leading to increased pollution that adversely affects both terrestrial and marine ecosystems. Public littering, a significant contributor to this pollution, poses severe threats to marine life due to plastic debris, which can inflict substantial ecological harm. Additionally, this pollution jeopardizes human health through contaminated food and water sources.
View Article and Find Full Text PDFNeural Netw
January 2025
School of Software Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Accurate 3D point cloud object detection is crucially important for autonomous driving vehicles. The sparsity of point clouds in 3D scenes, especially for smaller targets like pedestrians and bicycles that contain fewer points, makes detection particularly challenging. To solve this problem, we propose a single-stage voxel-based 3D object detection method, namely PFENet.
View Article and Find Full Text PDFData Brief
February 2025
North Carolina Agricultural and Technical State University, 1601 E Market St, Greensboro, NC 27411, United States.
Contemporary research in 3D object detection for autonomous driving primarily focuses on identifying standard entities like vehicles and pedestrians. However, the need for large, precisely labelled datasets limits the detection of specialized and less common objects, such as Emergency Medical Service (EMS) and law enforcement vehicles. To address this, we leveraged the Car Learning to Act (CARLA) simulator to generate and fairly distribute rare EMS vehicles, automatically labelling these objects in 3D point cloud data.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electronics Engineering, Vellore Institute of Technology, Vellore, India.
Autonomous vehicles, often known as self-driving cars, have emerged as a disruptive technology with the promise of safer, more efficient, and convenient transportation. The existing works provide achievable results but lack effective solutions, as accumulation on roads can obscure lane markings and traffic signs, making it difficult for the self-driving car to navigate safely. Heavy rain, snow, fog, or dust storms can severely limit the car's sensors' ability to detect obstacles, pedestrians, and other vehicles, which pose potential safety risks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!