The search of suitable combinations of stem cells, biomaterials and scaffolds manufacturing methods have become a major focus of research for bone engineering. The aim of this study was to test the potential of dental pulp stem cells to attach, proliferate, mineralize and differentiate on 3D printed polycaprolactone (PCL) scaffolds. A 100% pure M: 84,500 ± 1000 PCL was selected. 5 × 10 × 5 mm parallelepiped scaffolds were designed as a wood-pilled structure composed of 20 layers of 250 μm in height, in a non-alternate order ([0,0,0,90,90,90°]). 3D printing was made at 170 °C. Swine dental pulp stem cells (DPSCs) were extracted from lower lateral incisors of swine and cultivated until the cells reached 80% confluence. The third passage was used for seeding on the scaffolds. Phenotype of cells was determined by flow Cytometry Live and dead, Alamar blue™, von Kossa and alizarin red staining assays were performed. Scaffolds with 290 + 30 μm strand diameter, 938 ± 80 μm pores in the axial direction and 689 ± 13 μm pores in the lateral direction were manufactured. Together, cell viability tests, von Kossa and Alizarin red staining indicate the ability of the printed scaffolds to support DPSCs attachment, proliferation and enable differentiation followed by mineralization. The selected material-processing technique-cell line (PCL-3D printing-DPSCs) triplet can be though to be used for further modelling and preclinical experiments in bone engineering studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038447PMC
http://dx.doi.org/10.3390/polym13071154DOI Listing

Publication Analysis

Top Keywords

stem cells
16
pulp stem
12
bone engineering
12
dental pulp
8
von kossa
8
kossa alizarin
8
alizarin red
8
red staining
8
μm pores
8
cells
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!