Pressure sensors based on diamond membranes were designed and tested for gas pressure measurement up to 6.8 MPa. The diamond film (2" diameter, 6 μm thickness)-grown by microwave plasma chemical vapor deposition on a silicon substrate-was a starting material to produce an array of membranes with different diameters in the 130-400 μm range, in order to optimize the sensor performance. Each 5 mm × 5 mm sensing element was obtained by subsequent silicon slicing. The fixed film thickness, full-scale pressure range, and sensor sensitivity were established by a proper design of the diameter of diamond membrane which represents the sensing element for differential pressure measurement. The pressure-induced deflection of the membrane was optically measured using a Fabry-Pérot interferometer formed by a single mode optical fiber front surface and the deflecting diamond film surface. The optical response of the system was numerically simulated using geometry and the elastic properties of the diamond diaphragm, and was compared with the experiments. Depending on the diamond membrane's diameter, the fabricated sensors displayed a good modulation depth of response over different full-scale ranges, from 3 to 300 bar. In view of the excellent mechanical, thermal, and chemical properties of diamond, such pressure sensors could be useful for performance in a harsh environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038520 | PMC |
http://dx.doi.org/10.3390/ma14071780 | DOI Listing |
Cureus
December 2024
Ophthalmology, Medical School, Institute of Vision and Optics, University of Crete, Heraklion, GRC.
Purpose: Scleral cross-linking (SXL) with ultraviolet A (UVA) and riboflavin has already been used in laboratory studies for scleral stiffness increase as a potential treatment for progressive myopia and scleral ectasia. This study aims to investigate whether the regional application of scleral cross-linking (SXL) with ultraviolet A (UVA) and riboflavin in fresh porcine eye globes affects the ocular rigidity as well as its impact on intraocular pressure after an induced acute increase in the volume of intraocular fluid.
Methods: The study included two groups of fresh porcine eyes: an experimental group (n=20) that underwent scleral cross-linking (SXL) with riboflavin and UVA applied to the posterior sclera and a control group (n=20) that did not receive SXL treatment.
ACS Mater Au
January 2025
Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobataku, Kitakyushu, Fukuoka 804-8550, Japan.
Ionic gels (IGs), ionic liquids (ILs) dispersed in polymers, exhibit extremely low vapor pressure, electrochemical and thermal stability, and excellent mechanical characteristics; therefore, they are used for fabricating stretchable sensors, electrochemical transistors, and energy storage devices. Although such characteristics are promising for flexible and stretchable electronics, the mechanical stress-induced ruptured covalent bonds forming polymer networks cannot recover owing to the irreversible interaction between the bonds. Physical cross-linking via noncovalent bonds enables the interaction of polymers and ILs to form supramolecular IGs (SIGs), which exhibit favorable characteristics for wearable devices that conventional IGs with noncovalent bonds cannot achieve.
View Article and Find Full Text PDFACS Nano
January 2025
Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.
The synthesis of covalent organic frameworks (COFs) with excellent luminescent properties and their effective application in the field of bionic sensing remain a formidable challenge. Herein, a series of COFs with different numbers of hydroxyl groups are successfully synthesized, and the number of hydroxyl groups on the benzene-1,3,5-tricarbaldehyde (BTA) linker influences the properties of the final COFs. The COF (HHBTA-OH) prepared with hydrazine hydrate (HH) and BTA containing one hydroxyl group as the ligands exhibits the best fluorescent performance.
View Article and Find Full Text PDFInt J Stroke
January 2025
Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, 23100, Stockholm, Sweden.
Background And Aims: Physical activity is a key component of secondary stroke prevention. Mobile health (mHealth) interventions show promise for enhancing post-stroke physical activity, but most studies have combined mHealth with onsite services. This study evaluated the feasibility and acceptability of a fully digitalised mHealth intervention for physical activity among individuals post stroke or transient ischemic attack (TIA) in Sweden.
View Article and Find Full Text PDFClin Ther
January 2025
Department of Mechanical, Energy and Materials Engineering, School of Industrial Engineering, University of Extremadura, Badajoz, Spain.
Purpose: The aim of this study was to propose a lateral oscillating device for the prevention of pressure ulcers by understanding the mechanisms of tissue protection in healthy individuals during prolonged decubitus. We also sought to determine the optimal time interval for oscillation, considering peak pressure peaks and tolerable pressure limits as a function of individual characteristics such as age, weight, height, gender, and BMI.
Methods: A quasi-experimental, descriptive and analytical observational study was conducted between January 2022 and June 2023 with a sample of 25 healthy volunteers.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!