In this paper, we explore the performance of the distance-weighting probabilistic data association (DWPDA) approach in conjunction with the loopy sum-product algorithm (LSPA) for tracking multiple objects in clutter. First, we discuss the problem of data association (DA), which is to infer the correspondence between targets and measurements. DA plays an important role when tracking multiple targets using measurements of uncertain origin. Second, we describe three methods of data association: probabilistic data association (PDA), joint probabilistic data association (JPDA), and LSPA. We then apply these three DA methods for tracking multiple crossing targets in cluttered environments, e.g., radar detection with false alarms and missed detections. We are interested in two performance metrics: tracking accuracy and computation time. LSPA is known to be superior to PDA in terms of the former and to dominate JPDA in terms of the latter. Last, we consider an additional DA method that is a modification of PDA by incorporating a weighting scheme based on distances between position estimates and measurements. This distance-weighting approach, when combined with PDA, has been shown to enhance the tracking accuracy of PDA without significant change in the computation burden. Since PDA constitutes a crucial building block of LSPA, we hypothesize that DWPDA, when integrated with LSPA, would perform better under the two performance metrics above. Contrary to expectations, the distance-weighting approach does not enhance the performance of LSPA, whether in terms of tracking accuracy or computation time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038571PMC
http://dx.doi.org/10.3390/s21072544DOI Listing

Publication Analysis

Top Keywords

data association
20
distance-weighting approach
12
probabilistic data
12
tracking multiple
12
tracking accuracy
12
loopy sum-product
8
sum-product algorithm
8
targets measurements
8
three methods
8
performance metrics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!