Chloramphenicol (CHL) is a ribosome-targeting antibiotic that binds to the peptidyl transferase center (PTC) of the bacterial ribosome and inhibits peptide bond formation. As an approach for modifying and potentially improving the properties of this inhibitor, we explored ribosome binding and inhibitory properties of a semi-synthetic triphenylphosphonium analog of CHL-CAM-C4-TPP. Our data demonstrate that this compound exhibits a ~5-fold stronger affinity for the bacterial ribosome and higher potency as an in vitro protein synthesis inhibitor compared to CHL. The X-ray crystal structure of the 70S ribosome in complex with CAM-C4-TPP reveals that, while its amphenicol moiety binds at the PTC in a fashion identical to CHL, the C4-TPP tail adopts an extended propeller-like conformation within the ribosome exit tunnel where it establishes multiple hydrophobic Van der Waals interactions with the rRNA. The synthesized compound represents a promising chemical scaffold for further development by medicinal chemists because it simultaneously targets the two key functional centers of the bacterial ribosome-PTC and peptide exit tunnel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066774PMC
http://dx.doi.org/10.3390/antibiotics10040390DOI Listing

Publication Analysis

Top Keywords

bacterial ribosome
12
triphenylphosphonium analog
8
exit tunnel
8
ribosome
6
binding action
4
action triphenylphosphonium
4
analog chloramphenicol
4
bacterial
4
chloramphenicol bacterial
4
ribosome chloramphenicol
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!