The article presents a mathematical model for the magnetized nanofluid flow and heat transfer with an exothermic chemical reaction controlled by Arrhenius kinetics. Buongiorno's model with passive boundary condition is employed to formulate the governing equation for nanoparticles concentration. The momentum equation with slip boundary conditions is modelled with the inclusion of electroosmotic effects which remain inattentive in the study of microchannel flows with electric double layer (EDL) effects. Conclusions are based on graphical and numerical results for the dimensionless numbers representing the features of heat transfer and fluid flow. Frank-Kamenetskii parameter resulting from the chemical reaction showed significant effects on the optimization of heat transfer, leading to increased heat exchangers' effectiveness. The Hartmann number and slip parameter significantly affect skin friction, demonstrating the notable effects of electroosmotic flow and the exothermic chemical reaction on heat transfer in microchannels. This analysis contributes to prognosticating the convective heat transfer of nanofluids on a micro-scale for accomplishing successful thermal designs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066824 | PMC |
http://dx.doi.org/10.3390/nano11040905 | DOI Listing |
Adv Sci (Weinh)
January 2025
National Key Laboratory of Helicopter Aeromechanics, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China.
In this work, the regulation of liquid self-transport is achieved through architectural and thermal coupling, transitioning from free surfaces to open channels. Hierarchical structures inspired by the skin of a Texas horned lizard are designed, with the primary structure of wedged grooves and the secondary structure of capillary crura. This design enables advantages including long-distance self-transport, liquid storage and active reflux management on free surfaces, directional transportation, synthesis and detection of reagents in confined spaces, as well as controllable motion and enhanced heat dissipation in open channels.
View Article and Find Full Text PDFActa Crystallogr A Found Adv
March 2025
Pennsylvania State University, University Park, PA 16802, USA.
X-ray diffraction is ideal for probing the sub-surface state during complex or rapid thermomechanical loading of crystalline materials. However, challenges arise as the size of diffraction volumes increases due to spatial broadening and because of the inability to deconvolute the effects of different lattice deformation mechanisms. Here, we present a novel approach that uses combinations of physics-based modeling and machine learning to deconvolve thermal and mechanical elastic strains for diffraction data analysis.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
Jumping of coalescing condensate droplets from superhydrophobic surfaces is an interesting phenomenon which yields marked heat transfer enhancement over the more explored gravity-driven droplet removal mode in surface condensation, a phase change process of central interest to applications ranging from energy to water harvesting. However, when condensate microdroplets coalesce, they can also spontaneously propel themselves omnidirectionally on the surface independent of gravity and grow by feeding from droplets they sweep along the way. Here we observe and explain the physics behind this phenomenon of roaming of coalescing condensate microdroplets on solely nanostructured superhydrophobic surfaces, where the microdroplets are orders of magnitude larger than the underlaying surface nanotexture.
View Article and Find Full Text PDFJ Biol Phys
January 2025
Department of Mathematics and Statistics, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India.
This study evaluates the unsteady laminar flow and heat and mass transfer of a nanofluid in the appearance of gyrotactic microorganisms. In this analysis, using the Darcy-Forchheimer flow inside the vicinity of a nonlinearly stretched surface with Brownian motion and thermophoresis impacts. Similarity conversion is familiar with reduced governing models into dimensionless variables, and "bvp4c," a MATLAB solver, is employed to find the computational outputs of this analysis.
View Article and Find Full Text PDFLangmuir
January 2025
Liaoning Key Laboratory Clean Utilization of Chemical Resources, Dalian University of Technology, Dalian 116024, China.
Dropwise condensation offers substantial heat transfer advantages over filmwise condensation, enhancing the industrial condenser efficiency and reducing energy losses. However, the dynamics of condensate droplets on horizontal tube bundles remains complex and insufficiently studied. This paper presents a detailed investigation of the impact of dynamic behaviors of condensate droplets by numerical simulation using the Volume of Fluid model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!