Pre-harvest sprouting (PHS) severely reduces rice grain yield, significantly affects grain quality, and leads to substantial economic loss. In this study, we aimed to characterize the physicochemical properties and processing quality of the Garumi 2 flour rice variety under PHS conditions and compare them with those of the Seolgaeng, Hangaru, Shingil, and Ilpum rice varieties and the Keumkang wheat variety. Analysis of the molecular structure of starch revealed uniform starch granules, increased proportions of short-chain amylopectin in DP 6-12 (51.0-55.3%), and enhanced crystallinity (30.7-35.7%) in rice varieties for flour compared with the Ilpum cooking rice variety. PHS significantly altered the starch structure and gelatinization properties of Garumi 2. It also caused surface pitting and roughness in Garumi 2 starch granules and decreased their crystallinity. Collectively, the findings of this study provide important novel insights into the effects of PHS on the physicochemical properties of Garumi 2 floury rice for flour.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067219PMC
http://dx.doi.org/10.3390/foods10040746DOI Listing

Publication Analysis

Top Keywords

physicochemical properties
12
rice variety
12
floury rice
8
pre-harvest sprouting
8
variety phs
8
rice varieties
8
starch granules
8
properties garumi
8
rice
7
comparison morphological
4

Similar Publications

Oxidative stress and neuroinflammation play a pivotal role in pathomechanisms of brain ischemia. Our research aimed to formulate a nanotheranostic system for delivering carnosic acid as a neuroprotective agent with anti-oxidative and anti-inflammatory properties to ischemic brain tissue, mimicked by organotypic hippocampal cultures (OHCs) exposed to oxygen-glucose deprivation (OGD). In the first part of this study, the nanocarriers were formulated by encapsulating two types of nanocores (nanoemulsion (AOT) and polymeric (PCL)) containing CA into multilayer shells using the sequential adsorption of charged nanoobjects method.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most frequent cause of dementia. Since there are complex pathophysiological mechanisms behind AD, and there is no effective treatment strategy, it is necessary to introduce novel multi-targeting agents with fewer side effects and higher efficacy. Polydatin (PD) is a naturally occurring resveratrol glucoside employing multiple mechanisms toward neuroprotection.

View Article and Find Full Text PDF

Plant-based cheese analogs: structure, texture, and functionality.

Crit Rev Food Sci Nutr

January 2025

School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.

Plant-based cheese analogs have been developed using plant-based ingredients to mimic the appearance, structure, and flavor of conventional cheeses. Due to the complex composition and structure of cheese, developing plant-based cheese analogs that completely replicate its physicochemical, structural, sensory, and nutritional features is a highly challenging endeavor. Therefore, the design of the structure of plant-based cheese analogs requires a critical evaluation of the functional features of the selected ingredients and the specialized combination of these ingredients to create a desired structure.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

MEPSGEN, Seoul, Korea, Republic of (South).

Background: Impaired Aβ clearance plays a key role in the common, late-onset AD. Anti-Aβ immunotherapies are controversial, in part because of high rates of serious side effects including edema, microhemorrhages, and siderosis, highlighting the importance of the development of alternative Aβ clearance strategy. Here, we introduce a bioinspired nanoparticle named MG-PE3 crossing the human blood-brain barrier (BBB) and clearing Aβ with no adverse effect.

View Article and Find Full Text PDF

Symmetrical and asymmetrical surface structure expansions of silver nanoclusters with atomic precision.

Chem Sci

January 2025

Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China

Controlling symmetrical or asymmetrical growth has allowed a series of novel nanomaterials with prominent physicochemical properties to be produced. However, precise and continuous size growth based on a preserved template has long been a challenging pursuit, yet little has been achieved in terms of manipulation at the atomic level. Here, a correlated silver cluster series has been established, enabling atomically precise manipulation of symmetrical and asymmetrical surface structure expansions of metal nanoclusters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!