The urea cycle (UC) removes the excess nitrogen and ammonia generated by nitrogen-containing compound composites or protein breakdown in the human body. Research has shown that changes in UC enzymes are not only related to tumorigenesis and tumor development but also associated with poor survival in hepatocellular, breast, and colorectal cancers (CRC), etc. Cytoplasmic ornithine, the intermediate product of the urea cycle, is a specific substrate for ornithine decarboxylase (ODC, also known as ODC1) for the production of putrescine and is required for tumor growth. Polyamines (spermidine, spermine, and their precursor putrescine) play central roles in more than half of the steps of colorectal tumorigenesis. Given the close connection between polyamines and cancer, the regulation of polyamine metabolic pathways has attracted attention regarding the mechanisms of action of chemical drugs used to prevent CRC, as the drug most widely used for treating type 2 diabetes (T2D), metformin (Met) exhibits antitumor activity against a variety of cancer cells, with a vaguely defined mechanism. In addition, the influence of metformin on the UC and putrescine generation in colorectal cancer has remained unclear. In our study, we investigated the effect of metformin on the UC and putrescine generation of CRC in vivo and in vitro and elucidated the underlying mechanisms. In nude mice bearing HCT116 tumor xenografts, the administration of metformin inhibited tumor growth without affecting body weight. In addition, metformin treatment increased the expression of monophosphate (AMP)-activated protein kinase (AMPK) and p53 in both HCT116 xenografts and colorectal cancer cell lines and decreased the expression of the urea cycle enzymes, including carbamoyl phosphate synthase 1 (CPS1), arginase 1 (ARG1), ornithine trans-carbamylase (OTC), and ODC. The putrescine levels in both HCT116 xenografts and HCT116 cells decreased after metformin treatment. These results demonstrate that metformin inhibited CRC cell proliferation via activating AMPK/p53 and that there was an association between metformin, urea cycle inhibition and a reduction in putrescine generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038129PMC
http://dx.doi.org/10.3390/molecules26071990DOI Listing

Publication Analysis

Top Keywords

urea cycle
20
putrescine generation
16
colorectal cancer
12
metformin
9
generation colorectal
8
cancer cell
8
cell lines
8
tumor growth
8
metformin putrescine
8
metformin inhibited
8

Similar Publications

[Impact of Organic Amendment on the Bacterial Community and Rice Yield in Paddy Soil].

Huan Jing Ke Xue

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.

In this investigation, the influence of organic amendment on the structural and functional dynamics of soil microbial communities and its effect on rice productivity were examined. Five fertilization treatments from a 40-year field experiment were selected: no fertilizer (CK), inorganic NPK fertilizer (NPK), inorganic NPK combined with green manure (NG), inorganic NPK combined with green manure and pig manure (NGM), and inorganic NPK combined with green manure and rice straw (NGS). The findings revealed that the organic amendment enhanced the soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) levels, alongside an increase in rice yield; notably, the most significant improvements were observed with the NGM treatment.

View Article and Find Full Text PDF

The pristine phases SS1(ZnO), SS2(MnO), and SS3 (CuO) photocatalysts and mixed phases of ZnO-based nanocomposites were synthesized by the sol-gel method. Whereas SS4 (g-CN) was prepared through polymerization of urea. The synthesized photocatalysts were characterized using TGA-DTA, XRD, DRS, PL, DLS, FTIR, SEM, TEM, and HRTEM.

View Article and Find Full Text PDF

The efficient removal of 99TcO4- from alkaline nuclear waste is vital for optimizing nuclear waste management and safeguarding the environment. However, current state-of-the-art sorbent materials are constrained by their inability to simultaneously achieve high alkali resistance, rapid adsorption kinetics, large adsorption capacity, and selectivity. In this study, we synthesized a urea-rich cationic porous organic polymer, IPM-403, which demonstrates exceptional chemical stability, ultrafast kinetics (~92% removal within 30 seconds), high adsorption capacity (664 mg/g), excellent selectivity, along with multiple-cycle recyclability (up to 7 cycles), making it highly promising for the removal of ReO4- (surrogate of 99TcO4-) from nuclear wastewater.

View Article and Find Full Text PDF

Astragali Radix (AR) is one of the monarch drugs of Fangji Huangqi decoction and has the effects of inducing diuresis to alleviate edema, tonifying and strengthening the body. However, there is a paucity of research regarding the effective fraction and the underlying metabolic mechanism of AR on nephrotic syndrome (NS). This work aims to elucidate the potential mechanisms of AR treating NS, as well as to identify effective part and components.

View Article and Find Full Text PDF

Forensic metabolomics: Tracing cyanide-induced metabolic changes in fatalities.

Forensic Sci Int

December 2024

Metabolomics Core Facility-MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá 111711, Colombia. Electronic address:

Accurate detection of cyanide exposure is crucial, particularly in forensic science. However, cyanide's high volatility and potential biochemical conversions in biological samples pose challenges for direct detection, complicating the determination of cause of death. Identifying alternative cyanide metabolites as markers may mitigate false negatives and positives, extending the detection window in poisoning cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!