A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biochar utilisation in the anaerobic digestion of food waste for the creation of a circular economy via biogas upgrading and digestate treatment. | LitMetric

Biochar utilisation in the anaerobic digestion of food waste for the creation of a circular economy via biogas upgrading and digestate treatment.

Bioresour Technol

Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Chemical & Biomolecular Engineering, NUS, Singapore. Electronic address:

Published: August 2021

A wood waste-derived biochar was applied to food-waste anaerobic digestion to evaluate the feasibility of its utilisation to create a circular economy. This biochar was first purposed for the upgrading of the biogas from the said anaerobic digestion, before treating and recovering the nutrients in the solid fraction of the digestate, which was finally employed as a biofertilizer for the organic cultivation of three green leafy vegetables: kale, lettuce and rocket salad. Whilst the amount of CO the biochar could absorb from the biogas was low (11.17 mg g), it could potentially be increased by modifying through physical and chemical methods. Virgin as well as CO-laden biochar were able to remove around 31% of chemical oxygen demand, 8% of the ammonia and almost 90% of the total suspended solids from the digestate wastewater, which was better than a dewatering process via centrifugation but worse than the industry standard of a polytetrafluoroethylene membrane bioreactor. Nutrients were recovered in the solid fraction of the digestate residue filtered by the biochar, and utilised as a biofertilizer that performed similarly to a commercial complete fertilizer in terms of aerial fresh weight growth for all three vegetables cultivated. Contingent on the optimal upgrading of biogas, the concept of a circular economy based on biochar and anaerobic digestion appears to be feasible.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.125190DOI Listing

Publication Analysis

Top Keywords

anaerobic digestion
16
circular economy
12
upgrading biogas
8
solid fraction
8
fraction digestate
8
biochar
7
biochar utilisation
4
anaerobic
4
utilisation anaerobic
4
digestion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!