Free from toxic elements biomaterial potentially applicable for load bearing biomedical implants was obtained for the first time by laser cladding of S520 bioactive glass onto ultrafine-grained commercially pure titanium. The cladding process affected the refined structure of the substrate inducing martensitic transformation near its surface. The α' acicular martensite gradually passes into relatively large grains with increasing distance from the substrate surface, which subsequently are transformed into smaller grains of about 2 μm in diameter. Both the melted zone, where the martensite crystalline structure was found, and the HAZ are characterised by relatively lower hardness in comparison with that of the substrate core indicating increased ductility. Such a combination of zones with different properties may have a synergistic effect and is beneficial for the obtained biomaterial. A characteristic region in the form of about 3 μm width band was formed in the melted zone at about 10 μm below the titanium surface. The results of EDS analysis indicate that several glass elements moved into the region while the titanium content in the same area was decreased. High bioactivity of the coated S520 glass was revealed by in vitro testing with SBF solution and almost complete reduction of P concentration occurred after 14 days.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2021.104519 | DOI Listing |
Materials (Basel)
December 2024
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
In this study, FeCoNiCrSi (x = 0, 4, and 8) powders were successfully prepared using the aerosol method and employed to produce high-entropy coatings on Q235 steel via laser cladding. The microstructure and phase composition of the coatings were analyzed using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Corrosion resistance and potential were evaluated through electrochemical analysis and Kelvin probe force microscopy.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215137, China.
Composite coatings reinforced with varying mass fractions of SiC particles were successfully fabricated on 316 stainless steel substrates via laser cladding. The phase compositions, elemental distribution, microstructural characteristics, hardness, wear resistance and corrosion resistance of the composite coatings were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Vickers hardness testing, friction-wear testing and electrochemical methods. The coatings have no obvious pores, cracks or other defects.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China.
To enhance the tribological properties of the coatings and to inhibit cracking, sandwich-structured composite coatings were fabricated, consisting of a Ni60CuMo/IN718 transition layer and a Ni60CuMo/Ni-coated Cu wear-resistant layer with four different Ni-coated Cu contents. The results indicate that the transition layer inhibits the crack formation in the coating, and the refined grain structure stabilizes its average hardness at approximately 485 HV. Increasing the Cu content in the wear-resistant layer exacerbates the segregation of the Cu-rich solid solution phases and refines the in situ-generated CrC, TiC, and NbC phases.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
This study focuses on the planetary gear reducer and employs ANSYS 13.0 software to perform thermo-mechanical coupled simulations for the laser cladding repair process, aiming to address gear failure caused by cracks. The optimal theoretical repair parameters were determined based on temperature and stress field analyses, and performance testing of the cladding layer was conducted to validate the feasibility of the selected parameters.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Mechanical and Automotive Engineering, Ningbo University of Technology, Ningbo 315221, China.
To address the issue of cracking in aluminum extrusion dies during operation, this study employs laser cladding technology to modify the surface of these dies. This modification aims to enhance their hardness and friction resistance. Laser cladding technology was utilized to coat the surface of H13 steel with Stellite 12, a cobalt-based alloy, at varying laser power levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!