Effect of in vitro gastro-intestinal digestion on the phenolic composition and antioxidant capacity of Burdock roots at different harvest time.

Food Chem

Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China. Electronic address:

Published: October 2021

The current study aimed to evaluate how the harvest time affects the phenolic composition in Burdock root flours (BRF) and how these phenolics are influenced by the gastro-intestinal digestive environment. Burdock roots were harvested in 2020 in Jiangsu Province in June (B1), July (B2) and August (B3). The main phenolic, 5-O-caffeoylquinic acid (5-CQA) decreased after in vitro digestion from 1.14 to 0.22 mg/g (B1 < B2 < B3). Total phenolic content of BRF was 61% lower after in vitro digestion whereas 5-CQA bioaccessibility remained at about 60%. Twelve other phenolic compounds were tentatively identified after in vitro digestion. An average reduction in antioxidant capacity of 27% and 10% was observed for DPPH and ABTS, respectively. In conclusion, data demonstrated that phenolic composition, bioaccessibility and antioxidant capacity of Burdock roots harvested at different times were subject to the influence of in vitro gastrointestinal digestion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2021.129897DOI Listing

Publication Analysis

Top Keywords

phenolic composition
8
burdock roots
8
harvest time
8
vitro gastro-intestinal
4
gastro-intestinal digestion
4
digestion phenolic
4
composition antioxidant
4
antioxidant capacity
4
capacity burdock
4
roots harvest
4

Similar Publications

Essential oil and phenolic compounds in different organs and developmental stages of Monarda didyma L., and their biological activity.

Planta

January 2025

Department of Vegetable and Medicinal Plants, Institute of Horticulture Sciences, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02-776, Warsaw, Poland.

Plant development has a greater impact on the chemical composition of inflorescences than of the leaves and stems of Monarda didyma plants. Monarda didyma L. is a well-known ornamental and aromatic plant.

View Article and Find Full Text PDF

Insights into bioactivity guided chemical profiling of Mill. fruits wild-growing in Montenegro.

Heliyon

January 2025

Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108, Belgrade, Serbia.

Jujube ( Mill.) is a highly abundant wild-growing plant in Montenegro. It has been utilized since old times for various bioactive properties by the natives, however its detailed chemical characterization, antimicrobial, antioxidant and cytotoxic potential have not been extensively explored.

View Article and Find Full Text PDF

Introduction: Aqueous stem bark extracts of Aspidosperma rigidum Rusby, Couroupita guianensis Aubl., Monteverdia laevis (Reissek) Biral, and Protium sagotianum Marchand have been reported as traditional remedies in several countries of the Amazonian region. Despite previous research, further investigation to characterize secondary metabolites and the biological activity of extracts is needed to derive potential applications.

View Article and Find Full Text PDF

The study aimed to evaluate the effect of ultrasound maceration of cold-pressed oils with freeze-dried mullein flowers (Verbascum thapsus L.) on their oxidative stability and chemical composition. After the maceration process, oils' were subjected to their oxidative stability (80-120 °C) and their chemical composition, Moreover, oils kinetics parameters were calculated.

View Article and Find Full Text PDF

Bioinspired Adhesive Hydrogel Platform with Photothermal Antimicrobial, Antioxidant, and Angiogenic Properties for Whole-Process Management of Diabetic Wounds.

ACS Appl Mater Interfaces

January 2025

Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China.

Diabetic wound healing remains a major challenge in modern medicine. The persistent inflammation and immune dysfunction hinder angiogenesis by producing excessive ROS and increasing the susceptibility to bacterial infection. In this study, we developed an integrated strategy for whole-process management of diabetic wounds based on a bioinspired adhesive hydrogel platform with hemostasis, photothermal antimicrobial, antioxidant, anti-inflammatory, and angiogenic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!