Recently, the integration of sulfur-driven denitrification and anammox process has been extensively studied as a promising alternative nitrogen removal technology. Most of these studies investigated the process feasibility and monitored the community dynamics. However, an in-depth understanding of this new sulfur-nitrogen cycle bioprocess based on mathematical modeling and elucidation of complex interactions among different microorganisms has not yet been achieved. To fill this gap, we developed a kinetic model (with 7 bioprocesses, 12 variables, and 19 parameters) to assess the sulfur(thiosulfate)-driven denitrification and anammox (TDDA) process in a single reactor. The parameters used in this process were separately estimated by fitting the data obtained from the experiments. Then, the model was further validated under different conditions, and the results demonstrated that the developed model could describe the dynamic behaviors of nitrogen and sulfur conversions in the TDDA system. The newly developed branched thiosulfate oxidation model was also verified by conducting a metagenomics analysis. Using the developed model, we i) examined the interactions between sulfur-oxidizing bacteria and anammox bacteria at steady-state conditions with varying substrates to demonstrate the reliability of TDDA, and ii) evaluated the feasibility and operation of the TDDA process in terms of practical implementation. Our results will benefit further exploration of the significance of this novel S-N cycle bioprocess and guide its future applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2021.117155 | DOI Listing |
Adv Sci (Weinh)
December 2024
Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, P.R. China.
Denitrification and anaerobic ammonium oxidation (anammox) are the major microbial processes responsible for global nitrogen (N) loss. Yet, the relative contributions of denitrification and anammox to N loss across contrasting terrestrial and aquatic ecosystems worldwide remain unclear, hampering capacities to predict the human alterations in the global N cycle. Here, a global synthesis including 3240 observations from 199 published isotope pairing studies is conducted and finds that denitrification governs microbial N loss globally (79.
View Article and Find Full Text PDFBioresour Technol
December 2024
Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China.
Mainstream anammox faces challenges in adapting to non-optimal temperatures and managing greenhouse gas emissions. This study investigates nitrogen removal and NO emissions in attached-growth anammox reactors subjected to rapid temperature shifts (15-55 °C). Temperature reductions to 15-25 °C had minimal impact on the anammox bacterial populations, with nitrogen removal rates of 0.
View Article and Find Full Text PDFBioresour Technol
December 2024
Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Engineering Research Centre of Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China. Electronic address:
Anammox coupled partial S-driven autotrophic denitrification (PSAD) technology represents an innovative approach for removing nitrogen from wastewater. The research highlighted the crucial role of biofilm on sulfur particles in the nitrogen removal process. Further analysis revealed that sulfur-oxidizing bacteria (SOB) are primarily distributed in the inner layer of the biofilm, while anammox bacteria (AnAOB) are relatively evenly distributed in inner and outer layers, with Thiobacillus and Candidatus Brocadia being the dominant species, respectively.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, China. Electronic address:
In wetlands, hydrological conditions drive plant community distribution, forming vegetation zones with plant species and material cycling. This mediates nitrogen migration and NO emissions within wetlands. Five vegetation zones in a large wetland were studied during flooding and drought periods.
View Article and Find Full Text PDFWater Res X
January 2025
Qinhuangdao Huaheng Biological Limited Company, Qinhuangdao, 066000, China.
A full-scale simultaneous partial nitrification, anaerobic ammonia oxidation (anammox), and denitrification (SNAD) reactor was initiated to address the problem of high energy consumption for the treatment of low C/N wastewater. The SNAD system achieved a nitrogen removal rate of 0.9 kg/(m·d) at an influent NH₄-N concentration of 500 mg/L after 450 days of stable operation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!