HTRA (High temperature requirement protease A) family proteins includes HTRA1 (L56 or PRSS11), HTRA2/Omi, HTRA3 (PRSP) and HTRA4. These are oligomeric serine proteases highly conserved from bacteria to humans and are involved in a variety of biological functions including the maintenance of normal cell physiology and pathogenicity such as cell growth, apoptosis, neurodegenerative disorders, inflammation diseases and cancer. These proteins are normally expressed in placental villi during all pregnancy but their expression is found to be altered in pathological pregnancies suggesting a possible role of those proteins in the development of human placenta. Moreover, some HTRA family proteins have also been found in maternal blood and were impaired in pathological pregnancy suggesting a possible role of some of these proteins as early markers of pregnancy outcome. The aim of this review is to summarize the data currently available on the role of HTRA family proteins in pregnancy focalizing their role in pregnancy complications such as Preeclampsia (PE), IntraUterine Growth Restriction (IUGR) and Spontaneus PreTerm Birth (SPTB).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tice.2021.101549 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
A Gram-stain-negative, aerobic and rod-shaped bacterium, designated as HZG-20, was isolated from a tidal flat in Zhoushan, Zhejiang Province, China. The 16S rRNA sequence similarities between strain HZG-20 and RR4-56, NNCM2, P31 and X9-2-2 were 98.9, 91.
View Article and Find Full Text PDFInt J Surg
January 2025
Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.
Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).
Mol Biol Rep
January 2025
Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xi Cheng District, Beijing, 100050, China.
Canopy family proteins are highly sequence-conserved proteins with an N-terminal hydrophobic signal sequence, a unique pattern of six cysteine residues characteristic of the saposin-like proteins, and a C-terminal putative endoplasmic reticulum retention signal sequence. At present, the known canopy family proteins are canopy fibroblast growth factor signaling regulator 1 (CNPY1), CNPY2, CNPY3, and CNPY4. Despite similar structures, canopy family proteins regulate complex signal networks to participate in various biological processes.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2.
View Article and Find Full Text PDFHum Genet
January 2025
TCS Research, Tata Consultancy Services, Hyderabad, India.
Variants of uncertain significance (VUS) represent variants that lack sufficient evidence to be confidently associated with a disease, thus posing a challenge in the interpretation of genetic testing results. Here we report an improved method for predicting the VUS of Arylsulfatase A (ARSA) gene as part of the Critical Assessment of Genome Interpretation challenge (CAGI6). Our method uses a transfer learning approach that leverages a pre-trained protein language model to predict the impact of mutations on the activity of the ARSA enzyme, whose deficiency is known to cause a rare genetic disorder, metachromatic leukodystrophy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!