AI Article Synopsis

  • The female reproductive tract is affected by various conditions, including infections, endometriosis, and cancers, making it essential to develop effective research models.
  • In vitro organoid cultures provide a promising approach for studying the female reproductive tract since they maintain the cells' physiological characteristics better than traditional animal models.
  • Advanced materials and microphysiological devices are crucial for creating realistic environments to understand and potentially treat female reproductive diseases effectively.

Article Abstract

The maladies affecting the female reproductive tract (FRT) range from infections to endometriosis to carcinomas. In vitro models of the FRT play an increasingly important role in both basic and translational research, since the anatomy and physiology of the FRT of humans and other primates differ significantly from most of the commonly used animal models, including rodents. Using organoid culture to study the FRT has overcome the longstanding hurdle of maintaining epithelial phenotype in culture.  Both ECM-derived and engineered materials have proved critical for maintaining a physiological phenotype of FRT cells in vitro by providing the requisite 3D environment, ligands, and architecture. Advanced materials have also enabled the systematic study of factors contributing to the invasive metastatic processes. Meanwhile, microphysiological devices make it possible to incorporate physical signals such as flow and cyclic exposure to hormones. Going forward, advanced materials compatible with hormones and optimised to support FRT-derived cells' long-term growth, will play a key role in addressing the diverse array of FRT pathologies and lead to impactful new treatments that support the improvement of women's health. STATEMENT OF SIGNIFICANCE: The female reproductive system is a crucial component of the female anatomy. In addition to enabling reproduction, it has wide ranging influence on tissues throughout the body via endocrine signalling. This intrinsic role in regulating normal female biology makes it susceptible to a variety of female-specific diseases. However, the complexity and human-specific features of the reproductive system make it challenging to study. This has spurred the development of human-relevant in vitro models for helping to decipher the complex issues that can affect the reproductive system, including endometriosis, infection, and cancer. In this Review, we cover the current state of in vitro models for studying the female reproductive system, and the key role biomaterials play in enabling their development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2021.04.032DOI Listing

Publication Analysis

Top Keywords

reproductive system
20
female reproductive
16
vitro models
12
advanced materials
8
key role
8
female
6
reproductive
6
frt
6
vitro
5
system
5

Similar Publications

Multiple physiological changes occur during the menstrual cycle; many are attributed to fluctuations in estrogen, luteinizing hormone, follicle-stimulating hormone, and progesterone. These hormones differentially affect the menstrual cycle's follicular, ovulation, and luteal phases. Skin is one of the organs affected by changes in a woman's menstrual cycle.

View Article and Find Full Text PDF

Development of a novel calculator to predict gonadotropin dose and oocyte yield in oocyte cryopreservation cycles.

J Assist Reprod Genet

January 2025

Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Northwestern University, Chicago, IL, USA.

Purpose: To develop a predictive model for estimating the total dose of gonadotropins and the number mature oocytes in planned oocyte cryopreservation cycles.

Methods: In this retrospective study, oocyte cryopreservation cycles recorded in the Society for Assisted Reproductive Technology Clinic Outcome Reporting System Database from 2013 to 2018 were analyzed. Bivariate copula additive models for location, scale, and shape were performed to create a predictive model for estimating total dose of gonadotropins and number of mature oocytes.

View Article and Find Full Text PDF

The bovine conceptus elongates near Day 16 of development and releases interferon-tau (IFNT), disrupting the endometrial luteolytic mechanism to sustain luteal P4 and pregnancy. Conceptus factors other than IFNT modify local endometrial activities to support pregnancy; however, the microenvironment is largely uncharacterized. We utilized a bovine conceptus-endometrial culture system to elucidate the microenvironment in the form of RNA and protein.

View Article and Find Full Text PDF

The present article aimed to analyze the association between sociodemographic and hospitalization characteristics with the outcome of indigenous and non-indigenous pregnant and postpartum women, as well as factors associated with deaths among indigenous women hospitalized for Severe Acute Respiratory Syndrome (SARS) due to COVID-19 in Brazil. This is a cross-sectional and analytical study, with secondary data of pregnant and postpartum women of reproductive age, classified into race/skin color (indigenous and non-indigenous), extracted from the Obstetric Observatory, which uses data from the Influenza Epidemiological Surveillance Information System. The outcome variables were analyzed using the chi-square test or Fisher's exact test, and logistic regression was performed for the factors associated with the death of indigenous people.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a devastating autoimmune disease that leads to the destruction of the myelin sheath in the human central nervous system (CNS). Infection by viruses and bacteria has been found to be strongly associated with the onset of MS or its severity. We postulated that the immune system's attack on the myelin sheath could be triggered by viruses and bacteria antigens that resemble myelin sheath components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!