Cross-linking mass spectrometry (XL-MS) is a powerful tool for studying protein-protein interactions and elucidating architectures of protein complexes. While residue-specific XL-MS studies have been very successful, accessibility of interaction regions nontargetable by specific chemistries remain difficult. Photochemistry has shown great potential in capturing those regions because of nonspecific reactivity, but low yields and high complexities of photocross-linked products have hindered their identification, limiting current studies predominantly to single proteins. Here, we describe the development of three novel MS-cleavable heterobifunctional cross-linkers, namely SDASO (Succinimidyl diazirine sulfoxide), to enable fast and accurate identification of photocross-linked peptides by MS. The MS-based workflow allowed SDASO XL-MS analysis of the yeast 26S proteasome, demonstrating the feasibility of photocross-linking of large protein complexes for the first time. Comparative analyses have revealed that SDASO cross-linking is robust and captures interactions complementary to residue-specific reagents, providing the foundation for future applications of photocross-linking in complex XL-MS studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8214149PMC
http://dx.doi.org/10.1016/j.mcpro.2021.100084DOI Listing

Publication Analysis

Top Keywords

protein complexes
12
cross-linking mass
8
novel ms-cleavable
8
xl-ms studies
8
enabling photoactivated
4
photoactivated cross-linking
4
mass spectrometric
4
spectrometric analysis
4
analysis protein
4
complexes novel
4

Similar Publications

Promoter capture Hi-C identifies promoter-related loops and fountain structures in Arabidopsis.

Genome Biol

December 2024

State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.

Background: Promoters serve as key elements in the regulation of gene transcription. In mammals, loop interactions between promoters and enhancers increase the complexity of the promoter-based regulatory networks. However, the identification of enhancer-promoter or promoter-related loops in Arabidopsis remains incomplete.

View Article and Find Full Text PDF

Tumor microenvironment and immunotherapy for triple-negative breast cancer.

Biomark Res

December 2024

Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.

Triple-negative breast cancer (TNBC) is a subtype of breast cancer known for its high aggressiveness and poor prognosis. Conventional treatment of TNBC is challenging due to its heterogeneity and lack of clear targets. Recent advancements in immunotherapy have shown promise in treating TNBC, with immune checkpoint therapy playing a significant role in comprehensive treatment plans.

View Article and Find Full Text PDF

Auxin promotes chloroplast division by increasing the expression of chloroplast division genes.

Plant Cell Rep

December 2024

State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.

Auxin stimulates chloroplast division by upregulating the expression of genes involved in chloroplast division and influencing the positioning of chloroplast division rings. Chloroplasts divide by binary fission, forming a ring complex at the division site. Auxin, particularly indole acetic acid (IAA), significantly influences various aspects of plant growth.

View Article and Find Full Text PDF

This manuscript details the application of Isothermal Titration Calorimetry (ITC) to characterize the kinetics of 3CL, the main protease from the Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2), and its inhibition by Ensitrelvir, a known non-covalent inhibitor. 3CL is essential for producing the proteins necessary for viral infection, which led to the COVID-19 pandemic. The ITC-based assay provided rapid and reliable measurements of 3CL activity, allowing for the direct derivation of the kinetic enzymatic constants K and k by monitoring the thermal power required to maintain a constant temperature as the substrate is consumed.

View Article and Find Full Text PDF

Concatemer-assisted stoichiometry analysis: targeted mass spectrometry for protein quantification.

Life Sci Alliance

March 2025

https://ror.org/0168r3w48 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, USA

Large multiprotein machines are central to many biological processes. However, stoichiometric determination of protein complex subunits in their native states presents a significant challenge. This study addresses the limitations of current tools in accuracy and precision by introducing concatemer-assisted stoichiometry analysis (CASA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!